NOTE ON DEGREES OF PARTIAL FUNCTIONS

JOHN MYHILL

The notion of one function's being recursive in another is normally considered only for full functions; but Davis [1, p. 171] has given a definition applicable also to partial functions. For one-argument functions (to which we restrict ourselves for the sake of simplicity) this reads: \(f \) is partial recursive in \(g \) if there is a completely computable functional \(\Phi \) for which \(f(x) = \Phi(g, x) \). And here \(\Phi \) is called completely computable if for some partial recursive \(h \) we have

\[
\Phi(g, x) = t \iff (\exists y)(y^{(1)} \subseteq g \quad \text{and} \quad h(x, y) = t),
\]

\(\{ i^{(1)} \} \) being an effective enumeration of finite functions. In this note we shall argue that Davis' definition does not do justice to our intuitive idea of relative computability; we shall suggest an alternative definition; and we shall show that on either definition there are degrees which are not degrees of any full function. In fact we shall show that in a suitable sense "almost no" degrees are degrees of full functions.

Let \(\gamma \) be any nonrecursive set, and let \(g_0(2x) = 0 \) for \(x \in \gamma \), \(g_0(2x + 1) = 0 \) for \(x \notin \gamma \), \(g_0(x) \) undefined otherwise. Let \(c_\gamma \) be the characteristic function of \(\gamma \). Then \(c_\gamma(x) \) is 0 if \(g_0(2x) \) is 0 and 1 if \(g_0(2x + 1) \) is 0, so clearly \(c \) is effectively computable from \(g_0 \) in the intuitive sense. None the less, since \(g_0 \) is a restriction of the constant function \(n(x) = 0 \),

Received by the editors August 1, 1960.

1 This research was supported by NSF grant G-7277.

2 We use the notation of [1] except that (1) upper-case Greek letters denote functionals; (2) lower-case Greek letters denote sets (of numbers); (3) upper-case italic letters denote classes (of sets) as well as relations; (4) the complement of a set \(\alpha \) is written \(\alpha' \); (5) sometimes we write \([\Phi(\alpha)] \) for \(\lambda x(\Phi(f, x) = \alpha) \).

3 This fact was known to Lacombe and Shoenfield as early as 1958; but the use of a category argument to establish it, and the consequent strengthening of the result, is new.

4 We say that almost no semicharacteristic functions (see below) have a certain property, if the class of all sets whose semicharacteristic functions have this property is of first category; and that almost no (weak) degrees have a certain property if almost no semicharacteristic functions belong to (weak) degrees having that property. The latter usage is justified by the fact that every weak degree \(D \) contains a semicharacteristic function (for example \(c_\alpha^g \) where \(\alpha = \{ 2^{x \cdot 3^{(1)}} | f(x) \text{ is defined} \} \) for any \(f \in D \). (Not every strong degree contains a semicharacteristic function; for example this is not true, by the argument of the following paragraph, for any degree of a full non-recursive function.) Observe finally that there exist functions (for example the function \(g_0 \) of the following paragraph) which are not of the same degree as any full function on Davis' definition, though they are on ours.
\(\lambda x \Phi(g_0, x) \) is a restriction of the partial recursive function \(\lambda x \Phi(n, x) \) for every completely computable \(\Phi \): but \(c_n \), being full and nonrecursive, cannot be a restriction of a partial recursive function. Hence \(c \) is not partial recursive in \(g_0 \) in the sense of Davis.

We regard \(f \) as effectively computable from \(g \) in the intuitive sense if there exists a mechanical method by means of which every correct and no incorrect value of \(f \) can be computed using only finitely many values of \(g \). If we assume that this method can be formalized in some formal system with recursive rules of inference, we are led to the following amendment of Davis' definition.

\(f \) is called partial recursive in \(g \) if there is a recursively enumerable relation \(R(x, y, t) \) for which

\[
(1) \quad f(x) = t \leftrightarrow (\exists y)(y \uparrow_{11} \subseteq g \text{ and } R(x, y, t)).
\]

Trivially, if \(f \) is partial recursive in \(g \) in Davis' sense, it is in ours too. For \(g \) full the converse holds (cf. the Corollary of Theorem XIX in [2, p. 331]) but by the immediately preceding counterexample not for \(g \) arbitrary. Two functions are called strongly (Turing) equivalent if each is partial recursive in the other sense of Davis [1, p. 171]; weakly equivalent if each is partial recursive in the other in the sense of our definition. If two functions are strongly equivalent they are weakly equivalent; but not conversely by footnote 4 above. The equivalence classes relative to strong (weak) equivalence are called strong (weak) degrees. Not every strong degree contains a full function (footnote 4). Our main result in this note is that the same is true of weak degrees—in fact (cf. footnote 4) that "almost no" (weak) degree contains a full function. This will be established if we can prove the following theorem.

For each set \(\alpha \), let \(c_\alpha^0 \) (the semicharacteristic function of \(\alpha \)) be that function which is 0 on \(\alpha \) and undefined elsewhere. The class of all sets \(\alpha \) for which some full nonrecursive function is partial recursive in \(c_\alpha^0 \) in the sense of our definition is of first category.\(^6\) A fortiori the same is true of the class of all \(\alpha \) for which some full nonrecursive function is partial recursive in \(c_\alpha^0 \) in Davis' sense, and of the class of all \(\alpha \) for which \(c_\alpha^0 \) is strongly (weakly) equivalent to some full function.

For the proof, call \(f \) partial recursive in \(g \) with Gödel-number \(i \) if (1) holds where \(R \) is the \(i \)-th recursively enumerable relation in some canonical enumeration. If this is so we write \(f = \lceil \Phi_{i g} \rceil \).\(^7\)

\(^6\) We use the topology standard in recursion theory, i.e. we identify sets (or their characteristic functions) with points of \(\{0, 1\}^\mathbb{N} \), where \(\{0, 1\} \) is given the discrete topology. The collection of all classes \(\{\alpha | \beta \subseteq \alpha \text{ and } \alpha \cap \gamma = \emptyset \} \), where \(\beta \) and \(\gamma \) are disjoint finite sets, forms a convenient basis of open classes.
NOTE ON DEGREES OF PARTIAL FUNCTIONS

C. E. SHANKS

1961

521

does not exist for all \(i, g \); in fact it exists if and only if

\[
y_1^{[1]}, y_2^{[1]} \subseteq g, R_i(x, y_1, l_1), R_i(x, y_2, l_2) \rightarrow t_1 = t_2
\]

where \(R_i \) is the \(i \)th recursively enumerable relation.)

The theorem will follow if we can show that the class of all \(\alpha \) for which \([\Phi_c^0, \alpha] \) is full but not recursive is nowhere dense. Let then \(N \) be any basic open class; we seek a subneighborhood \(N_0 \) of \(N \) such that

\[
\alpha \in N_0, [\Phi_c^0, \alpha] \text{ defined and full } \rightarrow [\Phi_c^0, \alpha] \text{ recursive.}
\]

Let \(N = \{ \alpha | \beta \subseteq \alpha \text{ and } \gamma \cap \alpha = \emptyset \} \). Then \(N_0 \) satisfying (2) is defined by cases as follows.

Case I. \([\Phi_c^0, \gamma] \) is full. Then set \(N_0 = N \). For if \(\alpha \) satisfies the hypothesis of (2) we have \(\alpha \subseteq \gamma', c_\alpha \subseteq c_\gamma, [\Phi_c^0, \alpha] \subseteq [\Phi_c^0, \gamma] \). But since \([\Phi_c^0, \alpha] \) is full, \([\Phi_c^0, \alpha] = [\Phi_c^0, \gamma] \) and is therefore recursive.

Case II. \([\Phi_c^0, \gamma] \) is defined, but not full. Again set \(N_0 = N \). For as in Case I, \(\alpha \subseteq N_0 \rightarrow [\Phi_c^0, \alpha] \subseteq [\Phi_c^0, \gamma] \). But then \([\Phi_c^0, \alpha] \) is not full either, and (2) is vacuously true.

Case III. \([\Phi_c^0, \gamma] \) undefined. This can only happen if

\[
(\exists y_1 y_2 l_1 l_2 x)(y_1^{[1]}, y_2^{[1]} \subseteq c_\gamma, R_i(x, y_1, l_1), R_i(x, y_2, l_2), t_1 \neq t_2).
\]

Let \(\delta \) be the union of the domains of \(y_1^{[1]} \) and \(y_2^{[1]} \) (so that \(\delta \subseteq \gamma' \)). Then we can set \(N_0 = \{ \alpha | \beta \cup \delta \subseteq \alpha \text{ and } \gamma \cap \alpha = \emptyset \} \). For \(\alpha \subseteq N_0 \rightarrow \delta \subseteq \alpha \rightarrow [\Phi_c^0, \alpha] \) undefined; and again (2) holds vacuously.

Bibliography

University of California, Berkeley