HOLONOMY, RICCI TENSOR AND KILLING VECTOR FIELDS

KATSUMI NOMIZU

1. Let M be a Riemannian manifold, connected and of class C^∞. For any vector field X on M, we define a tensor field A_X of type $(1, 1)$, namely, a field of linear endomorphisms of the tangent space at each point, by setting $A_X Y = - \nabla_Y X$, where Y is a tangent vector at an arbitrary point and ∇_Y denotes covariant derivative with respect to Y.

It is known [2] that if A is a Killing vector field, then A_X is a skew-symmetric endomorphism of the tangent space and belongs to the normalizer of the holonomy algebra (Lie algebra of the homogeneous holonomy group) at each point of M. A result of Lichnerowicz [3] implies that if the restricted homogeneous holonomy group is irreducible and if the Ricci tensor is not zero, then A_X belongs to the holonomy algebra at each point. One of the basic contributions in contemporary Riemannian geometry is the result, due to Kostant [2], that the same conclusion holds if M is compact. His proof uses the Green-Stokes formula which is valid only on a compact Riemannian manifold.

In the present note, we wish to provide a more geometric proof to this theorem of Kostant, in fact, in a generalized form where the compactness of the space is not assumed. Namely, we shall prove

Theorem. Let M be a complete Riemannian manifold. If X is a Killing vector field defined on M which attains a local maximum in its length at some point of M, then A_X belongs to the holonomy algebra at each point of M.

Here we say that the length $|X|$ of a vector field X attains a local maximum at a point $x \in M$ if x has a neighborhood U such that $|X|_y \leq |X|_x$ for every point $y \in U$. The assumption of our theorem is valid, for example, if X has constant length on M, or if M is compact. The theorem of Kostant follows immediately.

2. We now sketch the proof of our theorem. First, we may assume that M is simply connected. Otherwise, let \tilde{M} be the universal covering manifold of M provided with a natural Riemannian metric so

Presented to the Society, October 22, 1960; received by the editors September 9, 1960.

1 This work was done while the author received Grant No. 8206 from the National Science Foundation at the Catholic University of America.
that the projection π of \tilde{M} onto M is a local isometry. \tilde{M} is complete.

The holonomy algebra at $\tilde{x} \in \tilde{M}$ is the same as the holonomy algebra at $x = \pi(\tilde{x})$. The given Killing vector field X on M can be lifted to a Killing vector field \tilde{X} on \tilde{M} which projects upon X. Suppose that $\|X\|$ attains a local maximum at $x \in M$. It is then clear that $\|\tilde{X}\|$ attains a local maximum at any point $\tilde{x} \in \tilde{M}$ such that $\pi(\tilde{x}) = x$. If the conclusion of the theorem holds for \tilde{X}, then it holds obviously for A_x.

Thus, let us assume that M is simply connected and complete. Let $M = M_0 \times M_1 \times \cdots \times M_k$ be the de Rham decomposition of M, where M_0 is a euclidean space and each M_i, $1 \leq i \leq k$, is irreducible [4]. The given Killing vector field X on M decomposes into a sum $X_0 + X_1 + \cdots + X_k$, where each X_i, $0 \leq i \leq k$, is a Killing vector field on M_i. Let $x = (x_0, x_1, \ldots, x_k) \in M_0 \times M_1 \times \cdots \times M_k$ be a point where $\|X\|$ attains a local maximum. Since $\|X\|^2 = \|X_0\|^2_0 + \|X_1\|^2_1 + \cdots + \|X_k\|^2_k$, each vector field X_i on M_i attains a local maximum at the point x_i for the following reason. Suppose that this is not the case and that for some i, $x_i \in M_i$ has an arbitrarily nearby point $y_i \in M_i$ such that $\|X_i\|_{y_i} > \|X_i\|_{x_i}$. Then we can get a point $y = (x_0, x_1, \ldots, y_i, \ldots, x_k)$ at which $\|X\|_y > \|X\|_x$ and which is arbitrarily near x, contrary to the assumption that $\|X\|$ attains a local maximum at x. It is clear that we have only to prove the theorem for each X_i on M_i.

We now consider each vector field X_i on M_i. On the euclidean space M_0, the length of a Killing vector field X_0 cannot have a local maximum unless it is constant, in which case, X_0 is a parallel vector field and the corresponding endomorphism A_{X_0} is zero at every point. On each M_i, $1 \leq i \leq k$, we make the following argument. The holonomy algebra of M_i is irreducible. If the Ricci tensor of M_i is not identically zero, then A_{X_i} belongs to the holonomy algebra by the result of Lichnerowicz as we already mentioned. To deal with the factor M_i whose Ricci tensor is identically zero, we need the following two general lemmas whose proofs will be given in §4.

Lemma 1. Let X be a Killing vector field on a Riemannian manifold. Then

$$\text{div}(A_X \cdot X) = - S(X, X) - \text{trace}(A_X^2),$$

where $S(X, X)$ is the quadratic form in X given by the Ricci tensor.

Lemma 2. For a Killing vector field X on a Riemannian manifold with Riemannian metric g, let $\phi = (1/2)\|X\|^2$. For any vector field V with $\nabla V = 0$ in a neighborhood of a point x, we have
\[V^2\phi = g(V, \nabla_V(A_x \cdot X)). \]

Now assume that the Ricci tensor \(S \) is identically zero. Lemma 1 gives \(\text{div}(A_x \cdot X) = -\text{trace}(A_x)^2 \). If \(\|X\| \) attains a local maximum at \(x \), we have \(V^2\phi = g(V, \nabla_V(A_x \cdot X)) \leq 0 \) at \(x \) in Lemma 2. Since \(\text{div}(A_x \cdot X) \) is the trace of the linear mapping \(V \mapsto \nabla_V(A_x \cdot X) \) of the tangent space at \(x \) into itself, we see that \(\text{div}(A_x \cdot X) \leq 0 \) at \(x \). On the other hand, \(A_x \) being skew-symmetric, we have \(\text{trace}(A_x)^2 \leq 0 \) at \(x \). Therefore we must have \(\text{div}(A_x \cdot X) = \text{trace}(A_x)^2 = 0 \) at \(x \), which is possible only when \(A_x = 0 \) at \(x \). Thus \(A_x \) belongs, of course, to the holonomy algebra at \(x \). As was shown in [2], it follows that \(A_x \) belongs to the holonomy algebra at each point of \(M \). This concludes the proof of our theorem.

3. A similar argument allows us to prove a theorem of Bochner [1] in the following form.

Theorem. Let \(M \) be a Riemannian manifold whose Ricci tensor is negative definite. If a Killing vector field \(X \) attains a local maximum in its length at some point of \(M \), then \(X \) is identically zero.

In fact, by the same argument following the above lemmas, we have \(-S(X, X) - \text{trace}(A_x)^2 \leq 0 \) at \(x \). On the other hand, since \(S \) is negative definite, we must have \(-S(X, X) \geq 0 \) everywhere. We have also \(-\text{trace}(A_x)^2 \geq 0 \). Thus, at \(x \), we have \(S(X, X) = 0 \) and \(\text{trace}(A_x)^2 = 0 \), which imply that \(X = 0 \) and \(A_x = 0 \) at \(x \). By a well known fact that a Killing vector field on a connected Riemannian manifold is uniquely determined by the values of \(X \) and \(A_x \) at an arbitrary single point [2], we see that \(X \) is zero on the whole manifold.

4. For the sake of completeness, we shall give here proofs of Lemmas 1 and 2.

Proof of Lemma 1. The Ricci tensor is given, by definition, by \(S(X, Y) = \text{trace of the linear endomorphism } V \mapsto R(V, X)Y \) of the tangent space at each point, where \(R \) is the curvature tensor and \(R(V, Y) \) is the skew-symmetric endomorphism obtained by contraction of \(R \) with vectors \(V \) and \(Y \). Now assume that \(X \) is a Killing vector field and \(Y \) is an arbitrary vector field. We have \(\nabla_V(A_x) = R(X, V) \) (see [2]), and hence \(-R(X, V)Y = -(\nabla_V(A_x)Y) = -\nabla_V(A_x \cdot Y) + A_x(\nabla_VY) = -A_x \cdot A_y \cdot V \). Thus we obtain

\[S(X, Y) = -\text{div}(A_x \cdot Y) - \text{trace}(A_x A_y). \]

* After the completion of this paper, there appeared a paper by Robert Hermann, *Totally geodesic orbits of groups of isometries* (Lincoln Laboratory, MIT, June 1960). He makes use of formulas which are essentially the same as ours.
The formula in Lemma 1 follows by taking $Y = X$.

Proof of Lemma 2. We recall that $Z \cdot g(X, Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y)$ for arbitrary vector fields X, Y and Z (this is an infinitesimal expression of the fact that the parallel displacement of the Riemannian connection is isometric). Applying this formula, we have

$$V \cdot \phi = (1/2) V \cdot g(X, X) = g(\nabla_V X, X) = g(-A_X \cdot V, X) = g(V, A_X \cdot X),$$

since A_X is skew-symmetric when X is a Killing vector field. We then obtain

$$V^2 \phi = V \cdot g(V, A_X X) = g(\nabla_V V, A_X \cdot X) + g(V, \nabla_V (A_X)) = g(V, \nabla_V (A_X)),$$

since $\nabla_V V = 0$ by assumption.

Bibliography

Brown University and Catholic University of America