A NOTE ON MATRIX RICCATI SYSTEMS

W. J. COLES

1. Let \(A(t) \) be an \(n \times n \) matrix, continuous on an interval \(I \); let \(n_1, \ldots, n_k \) be positive integers such that \(\sum_{i=1}^{k} n_i = n \). Let \(A \) be partitioned into submatrices \(A_{ij} \) which are \(n_i \times n_j \), \((i, j = 1, \ldots, k) \); let \(E_m \) be the identity matrix of order \(m \); and let \(A_m = (A_{m1} \cdots A_{mk}) \). In this note we consider the matrix Riccati system with side condition

\[
Y' = -YA_mY + AY, \quad Y_m(t_0) = E_m,
\]

where \(Y = \text{col}(Y_1, \ldots, Y_k) \) and \(Y_i \) is \(n_i \times n_m \). This equation is derived in a natural way as a generalization of the so-called Riccati system \([1; 2]\). Mainly we generalize some results of Levin \([3]\), who treats the equation

\[
\Gamma' = -\Gamma G_3 \Gamma - \Gamma G_4 + G_1 \Gamma + G_2,
\]

where \(G_1, G_2, G_3, \) and \(G_4 \) are \(n_1 \times n_1, n_1 \times n_2, n_2 \times n_1, \) and \(n_2 \times n_2 \) respectively, and \(\Gamma \) is \(n_1 \times n_2 \). To see that (2) is a case of (1), take \(m = 2 \) and

\[
A = \begin{pmatrix} G_1 & G_2 \\ G_3 & G_4 \end{pmatrix}, \quad Y(t) = \begin{pmatrix} \Gamma(t) \\ E_n \end{pmatrix}.
\]

For other related results see \([4]\).

2. Let \(X \) be \(n \times n \) and such that

\[
X' = AX.
\]

The partitioning of \(A \) induces a partitioning of \(X \) into submatrices \(X_{ij} \) \((i, j = 1, \ldots, k)\). Let \(X_m = \text{col}(X_{1m} \cdots X_{km}) \). Then

\[
X_m' = AX_m,
\]

and, at least formally,

\[
(X_{mm}^{-1})' = -X_{mm}^{-1}A_mX_{mm}^{-1}.
\]

Thus, if \(X_{mm}^{-1} \) exists on some interval \(I_0 \subseteq I \), \(X_mX_{mm}^{-1} \) is a solution on \(I_0 \) of (1). Further, if \(Y \) is a solution of the differential equation of (1), \(Y_m \) satisfies an equation of the form \(P' + HP = H \); thus from classical

Presented to the Society, January 25, 1961 under the title The cross-ratio property for the matrix Riccati equation; received by the editors June 13, 1960 and, in revised form, September 12, 1960.

557
existence and uniqueness theorems (1) has a local existence and uniqueness theorem and $Y_m(t) = E_m$. Gathering together these remarks, we have

Theorem 1. Let $X(t)$ be the solution of (3) such that $X(t_0) = E_n$. Then the general solution near t_0 of (1) is $X(t)C(\sum_{i=1}^k X_i C_i)^{-1}$, where C is constant and arbitrary, $C = \text{col}(C_1 \cdot \cdot \cdot C_k)$, C_i is $n_i \times n_m$, and C_m is nonsingular.

3. Now let $n = rk$ and $n_i = r$ ($i = 1, \cdot \cdot \cdot , k$). We proceed to write the general solution of (1) in terms of solutions of (1) rather than solutions of (3). Let $U_1, \cdot \cdot \cdot , U_k$ denote solutions of (1); let $U = (U_1 \cdot \cdot \cdot U_k)$; let $Z = \text{diag}(Z_j)$, where Z_j is $r \times r$, and

$$Z_j = A_m U_j Z_j \quad (j = 1, \cdot \cdot \cdot , k).$$

Theorem 2. Let $U(t_0)$ and $Z(t_0)$ be nonsingular; let $C = \text{col}(C_j)$, the C_j being $r \times r$, constant, and arbitrary except that $\sum_{j=1}^k Z_j(t_0) C_j$ is nonsingular. Then the general solution of (1) can be written near t_0 as

$$Y = UZC \cdot \left(\sum_{j=1}^k U_m Z_j C_j \right)^{-1}. \quad (7)$$

Proof. It is easily verified that UZ satisfies (3) and that, if $U(t_0)$ is nonsingular, $U(t)$ is nonsingular where it exists; the conclusion then follows.

Now let $U_{hij} = U_{hi} - U_{hj}$ and $V_{hij} = U_{hij}^{-1}$. It is easily verified that $(U_i - U_j) V_{hij}$ satisfies an equation of the form (1). Thus, if

$$[(U_i - U_q) V_{hij} - (U_i - U_j) V_{hij}]_{t=t_0} = 0, \quad (8)$$

it is identically zero near t_0. Hence, if (8) is satisfied, $V_{hij} U_{hij}$ satisfies

$$W' = A_m U_j W - W A_m U_q. \quad (9)$$

Now fix q; we may as well take $q = 1$.

Theorem 3. Let $|U(t_0)| \neq 0$. Let $i = k + j - 1$ ($j = 2, \cdot \cdot \cdot , k$). Let U_i be a solution of (1) such that, for some r_j ($1 \leq r_j \leq k$, $r_j \neq m$), U_{r_ij} and U_{r_1} are nonsingular at t_0 and (8) is satisfied for $q = 1$ and $h = r_j$. Let $|Z(t_0)| \neq 0$. Then the general solution of (1) can be written in the form (7), where $Z_j = V_{r_ij} U_{r_1} Z_j$ ($j = 2, \cdot \cdot \cdot , k$).

Proof. Note that $Z_j = A_m U_1 Z_j$ and that $V_{r_ij} U_{r_1}$ satisfies (9) with $q = 1$; then apply Theorem 2.

We remark that, given q, j, and $h \neq k$, there does exist a set of initial values for the U_i which satisfies (8). However, if for U_j and
$U_p \ (p \neq j)$ the same initial values for U_i satisfy (8), there is a linear combination of columns of U_i, U_j, and U_p which is zero. Thus, since $|U(t_0)| \neq 0$, each U_j requires a distinct U_i. Thus, although we need not eliminate all of the Z_j's ($j = 2, \ldots, k$) in the general solution, we do need a distinct U_i for each one we do eliminate.

For $k = 2$ we have Theorem 5 of [3]. For $r = 1$ and general k we have a form for Y different from that given in [2].

BIBLIOGRAPHY