ON COMPONENTS IN SOME FAMILIES OF SETS1

BRANKO GRÜNBAUM AND THEODORE S. MOTZKIN

1. Introduction. Helly's well-known theorem [3] states that all the
members of a family of compact convex subsets of the Euclidean
n-space E^n have a point in common provided every $n + 1$ members of
\mathcal{C} have a common point. On the other hand (Motzkin, cf. Hadwiger-
Debrunner [2] for further reference), there exists no (finite) number
h with the following property: If \mathcal{K} is a family of subsets of E^n (even
of E^1) such that each member of \mathcal{K} is the union of at most two dis-
joint, compact, convex sets, and such that every h members of \mathcal{K}
have a common point, then all the members of \mathcal{K} have a common
point.

A consideration of the examples which establish the nonexistence
of h led to the idea that there might exist theorems of Helly's type for
such families \mathcal{K} if an additional condition is imposed on \mathcal{K}: the inter-
section of any two members of \mathcal{K} should also be representable as
the union of at most two disjoint, compact, convex sets. The present
paper contains a theorem in this direction together with related re-
results on families \mathcal{K} whose elements are disjoint unions of members of
another family \mathcal{C}.

In §2 we give the definitions of the properties we consider, and the
statements of our main results. The proofs follow in §3. Remarks, ex-
amples, and counter-examples are given in §4.

2. Definitions and results. We shall deal mainly with families of
subsets of some set, on whose nature nothing is assumed.

For a set A or an ordinal μ we denote by $\text{card } A$ resp. $\text{card } \mu$ the
corresponding cardinal. Thus, for a family of sets $\mathcal{C} = \{C_\alpha : \alpha \in \mathcal{A}\}$
we have $\text{card } \mathcal{C} = \text{card } A$. The letter ω is used only for initial ordinals.

For a family of sets $\mathcal{C} = \{C_\alpha : \alpha \in \mathcal{A}\}$ we put $\pi C = \bigcap_{\alpha \in \mathcal{A}} C_\alpha$ and
$\sigma C = \bigcup_{\alpha \in \mathcal{A}} C_\alpha$.

We define $K = C_1 + C_2$ to be an abbreviation for the statement
"$K = C_1 \cup C_2$ and $C_1 \cap C_2 = \emptyset$." Similarly, for $\mathcal{C} = \{C_\alpha : \alpha \in \mathcal{A}\}$, we
write $K = \sum_{\alpha \in \mathcal{A}} C_\alpha = \Sigma C$ for "$K = \sigma C$ and $C_\alpha \cap C_\beta = \emptyset$ for all $\alpha, \beta \in \mathcal{A}$
with $\alpha \neq \beta$.

If $K = \Sigma \mathcal{C}$, each member of \mathcal{C} is a component of K and $\Sigma \mathcal{C}$ is a de-
composition of K.

1 The preparation of this paper was sponsored in part by the National Science
Foundation, and by the Office of Naval Research.

Presented to the Society, November 25, 1960; received by the editors September
12, 1960.
For any family \mathcal{C} and any cardinal γ let $[\mathcal{C}]_\gamma = \{ \Sigma \mathcal{C}' : \mathcal{C}' \subseteq \mathcal{C}, \ \text{card} \ \mathcal{C}' < \gamma + 1 \}$ and $[\mathcal{C}] = \{ \Sigma \mathcal{C}' : \mathcal{C}' \subseteq \mathcal{C} \}$. For $K \subseteq [\mathcal{C}]$ let $c(K) = \min \{ \text{card} \ \mathcal{C}' : K = \Sigma \mathcal{C}' , \ \mathcal{C}' \subseteq \mathcal{C} \}$.

This paper deals with some properties of families of sets which we proceed to define.

Definition 1. A family \mathcal{C} is γ-intersectional (for a finite or infinite cardinal $\gamma \geq 1$) if for every subfamily $\mathcal{C}' \subseteq \mathcal{C}$ with $\text{card} \ \mathcal{C}' < \gamma + 1$ we have $\pi \mathcal{C}' \subseteq \mathcal{C}$. The family \mathcal{C} is intersectional if it is γ-intersectional for every $\gamma \geq 1$.

Obviously, if $\gamma^* \leq \gamma$ and \mathcal{C} is γ-intersectional, it is γ^*-intersectional as well. Every family is 1-intersectional; every 2-intersectional family is \aleph_0-intersectional.

Definition 2. A family \mathcal{C} is γ-nonadditive (for a finite or infinite cardinal $\gamma \geq 2$) if for every subfamily $\mathcal{C}' \subseteq \mathcal{C}$, with $\emptyset \not\subseteq \mathcal{C}'$ and $1 < \text{card} \ \mathcal{C}' < \gamma + 1$, such that $\Sigma \mathcal{C}'$ is defined, we have $\Sigma \mathcal{C}' \not\subseteq \mathcal{C}$. The family \mathcal{C} is nonadditive if it is γ-nonadditive for every $\gamma \geq 2$.

Examples. The family of all closed [open] subsets of E^n is intersectional [\aleph_0-intersectional]. The family of all connected and open [compact] subsets of E^n is nonadditive [\aleph_1-nonadditive; see [4]]. In the set of ordinals $\{ \alpha : \alpha < \omega , \text{card} \ \omega = k \}$, for any $k > \aleph_0$, all segments of the form $[\alpha , \beta]$ or $[\beta , \omega)$, where α , β are limit-ordinals, form a family \mathcal{S} which is intersectional and nonadditive. For any set S with card $S = k \geq \aleph_0$ the family of all subsets of S with complements of cardinal less than k is \aleph_0-intersectional and nonadditive.

Definition 3. A family \mathcal{C} has the Helly property of order h with limit γ (h, γ cardinals with $2 \leq h < \gamma$) if for each subfamily $\mathcal{C}' \subseteq \mathcal{C}$, with $\text{card} \ \mathcal{C}' < \gamma + 1$, the condition $"\pi \mathcal{C}' \neq \emptyset"$ for all $\mathcal{C}' \subseteq \mathcal{C}$, with $\text{card} \ \mathcal{C}' < h + 1$ implies $\pi \mathcal{C}' \neq \emptyset$. The family \mathcal{C} has the unlimited Helly property of order h if it has the Helly property of order h with limit γ for every $\gamma > h$.

Examples. The family of all compact subsets of any topological space has the unlimited Helly property of order \aleph_0. The family of convex subsets of E^n has the Helly property of order $n + 1$ with limit \aleph_0; that of compact convex subsets has the unlimited Helly property of order $n + 1$ (Helly’s theorem). The family of all closed segments $[\alpha , \beta]$ of a well-ordered set has the unlimited Helly property of order 2; if segments $[\alpha , \mu)$, for a limit ordinal μ, are included, the family has the Helly property of order 2 with limit card μ.

The first theorem gives a criterion for the uniqueness of the decomposition of K.

Theorem 1. Let $\mathcal{C} = \{ C_\alpha : \alpha \in A \}$ be 2-intersectional and γ-nonadditive, and $K \subseteq [\mathcal{C}]_\gamma$. If $K = \sum_{\alpha ' \in A '} C_\alpha'$ with $A ' \subseteq A$, card $A ' < \gamma + 1$,
and $C_{a'} \neq \emptyset$ for all $a' \in A'$, and if $K = \sum_{a'' \in A''} C_{a''}$ with $A'' \subset A$, card $A'' < \gamma + 1$, and $C_{a''} \neq \emptyset$ for all $a'' \in A''$, then there exists a one-to-one map ϕ from A' onto A'' such that $C_{a'} = C_{\phi(a')}$ for all $a' \in A'$. In other words, the components of K are uniquely determined.

As an immediate corollary we have:

Corollary. Let \mathcal{C} be 2-intersectional and γ-nonadditive, and let $K \in [\mathcal{C}]_\gamma$ (i.e., $c(K) \leq n$), where n is a finite cardinal and $\gamma \geq n$. Let $K^* \in [\mathcal{C}]_\gamma$, $K \subset K^*$, and let some n different components of K^* each have a nonempty intersection with K. Then different components of K are contained in different components of K^*, and, in particular, $c(K) = n$.

Obvious examples show that the corollary may fail for infinite n.

The next theorem shows that $[\mathcal{C}]_\gamma$ is, in a sense, weakly intersectional: if the intersections of all members of certain subfamilies of $\mathcal{K} \subset [\mathcal{C}]$, belong to $[\mathcal{C}]_\gamma$, then for each subfamily of \mathcal{K} the intersection of its members belongs to $[\mathcal{C}]_\gamma$.

Theorem 2. Let \mathcal{C} be γ-intersectional and γ'-nonadditive, $\mathcal{K} \subset [\mathcal{C}]_\gamma$, and $\pi \mathcal{K} \subset [\mathcal{C}]_\gamma'$. Then there exists a subfamily $\mathcal{K}' \subset \mathcal{K}$, with $1 + \text{card } \mathcal{K}' \leq c(\pi \mathcal{K})$, such that different components of $\pi \mathcal{K}$ are contained in different components of $\pi \mathcal{K}'$; in particular, $c(\pi \mathcal{K}') \geq c(\pi \mathcal{K})$.

A result of Helly's type for members of $[\mathcal{C}]_2$ is given by

Theorem 3. Let \mathcal{C} be γ-intersectional and \mathcal{K}_0-nonadditive, with the Helly property of order h and limit γ^*, $\gamma^* \geq \mathcal{K}_0 > h$. Let $\mathcal{K} \subset [\mathcal{C}]_2$ be such that card $\mathcal{K} < \gamma + 1$ and $K' \cap K'' \subset [\mathcal{C}]_2$ for all $K', K'' \in \mathcal{K}$. Then \mathcal{K} has the Helly property of order $2h$ with limit γ^*.

3. Proofs.

Proof of Theorem 1. Obviously

$$K = \sum_{a' \in A': a'' \in A''} (C_{a'} \cap C_{a''})$$

is a decomposition of K. If for each $a' \in A'$ and each $a'' \in A''$ either $C_{a'} \cap C_{a''} = \emptyset$ or $C_{a'} \cap C_{a''} = C_{a'}$, the theorem is proved. Assume on the contrary that there exists an $a' \in A'$ and an $a'' \in A''$ such that $C_{a'} \cap C_{a''}$ is neither \emptyset nor $C_{a'}$. Let $A_{a'}' = \{a'' \in A'': C_{a'} \cap C_{a''} \neq \emptyset\}$. Then $2 \leq \text{card } A_{a'}' < \gamma + 1$ and $C_{a'} = C_{a'} \cap K = C_{a'} \cap \sum_{a'' \in A''} C_{a''} = \sum_{a'' \in A_{a'}'} (C_{a'} \cap C_{a''})$, in contradiction to the γ-nonadditivity of \mathcal{C}.

Proof of Theorem 2. (i) Let $c(\pi \mathcal{K}) \geq 2$. Then there exist points x_1 and x_2 contained in different components C_1^*, C_2^* of $K^* = \pi \mathcal{K}$. For some $K_0 \in \mathcal{K}$ the points x_1 and x_2 are contained in different com-
ponents of K_0; indeed, otherwise there would for each $K \in \mathcal{K}$ exist a component C' of K with $x_1, x_2 \in C$. Now $C = \pi \{ C' : K \in \mathcal{K} \} \in \mathcal{E}$ but, on the other hand, $C = C \cap K^* \supseteq (C \cap C^*_1) + (C \cap C^*_2)$, and none of the components is empty (since $x_i \in C \cap C^*_i$), contradicting the γ'-nonadditivity of \mathcal{E}. If $c(K^*) = 2$, it follows at once from the corollary to Theorem 1 that different components of K^* are contained in different components of K_0.

(ii) We now assume that $c(K^*) = n$ is finite, $n > 2$, and that the theorem is proved for all n' with $n' < n$. We start as in (i) with a set $K_0 \equiv \sum_{v \in N} C_v \in \mathcal{K}$, where $\text{card} \, N = c(K_0) \geq 2$, such that $C_1 \cap K^* \neq \emptyset \text{ and } C_2 \cap K^* \neq \emptyset$. Let $q_v = c(K^* \cap C_v) \geq 0$ for $v \in N$. By Theorem 1 we have

\[
\sum_{v \in N} q_v = c(K^*) = n.
\]

This implies that $N_0 = \{ v \in N : q_v > 0 \}$ is finite and contains at most n elements. Let us assume that $N_0 = \{ 1, 2, \ldots, t \}$ and that the components of K_0 are labeled in such a way that $q_1 \geq 2$ for $1 \leq v \leq s$, and $q_v = 1$ for $s < v \leq t$. If $s = 0$, then (*) implies $t = n$, and by the corollary to Theorem 1 the n components of K_0 contain the n components of K^*, as claimed. Thus we are left with the case $s \geq 1$; then $2 \leq t < n$, $q_1 \geq 2$ and, by the choice of K_0, $q_2 \geq 1$; therefore, by (*), $q_v < n$ for all $v \in N_0$. This allows us to apply the inductive assumption to each of the s families $\mathcal{K}_v = \{ C_v \cap K : K \in \mathcal{K} \}$, $1 \leq v \leq s$. It follows that for each v, with $1 \leq v \leq s$, there exists a subfamily $\mathcal{K}' \subset \mathcal{K}_v$, containing $p_v \leq q_v - 1$ members, such that the different components of $C_v \cap K^*$ are contained in different components of $\pi \mathcal{K}'$. The family $\mathcal{K}' = \{ K_0 \}

\cup (U_{v=1}^t \mathcal{K}_v')$ satisfies all the conditions of the theorem. Indeed, different components of K^* are, by the corollary to Theorem 1, contained in different components of $\pi \mathcal{K}'$; but on the other hand, \mathcal{K}' contains only $1 + \sum_{v=1}^t p_v \leq 1 - s + \sum_{v=1}^s q_v = 1 - s + n - (t - s) = n + 1 - t \leq n - 1 < c(K^*)$ members.

(iii) There remains the case in which $k = c(K^*)$ is infinite. Let ω be the initial ordinal of k and let $K^* = \pi \mathcal{K} = \sum_{v < \omega} C^*_v$. For each $v < \omega$ let $x_v \in C^*_v$. As in (i), for each pair $v, \mu < \omega$ with $v \neq \mu$ there exists some $K_{v,}\mu \in \mathcal{K}$ such that x_v and x_μ are contained in different components of $K_{v,}\mu$. Let $\mathcal{K}' = \{ K_{v,}\mu : x_v, \mu < \omega \}$. Then $\text{card} \, \mathcal{K}' \equiv (\text{card} \, \omega)^2 = k$. For the family \mathcal{K}' we have $c(\pi \mathcal{K}') \geq k$ since x_v and x_μ belong to different components of $\pi \mathcal{K}'$. By an argument similar to that used in the proof of Theorem 1 it follows that different components of K^* are contained in different components of $\pi \mathcal{K}'$. This ends the proof of Theorem 2.
Proof of Theorem 3. For some fixed \(h \) assume the theorem false; let \(k = h \) be the minimal cardinal for which there exists a family with \(\mathcal{K} = k \) contradicting the theorem.

(i) Assume \(k \) finite. Then for each \(K^* \in \mathcal{K} \) we have \(\pi \{ K \in \mathcal{K} : K \neq K^* \} \neq \emptyset \). Let \(\mathcal{X}_i = \{ K \in \mathcal{K} : c(K) = i \} \) for \(i = 1, 2 \), and let \(K = C_1 + C_2 \) for all \(K \in \mathcal{K}_2 \). We assume that \(\mathcal{K} \) is chosen in such a way that card \(\mathcal{X}_1 + 2 \) card \(\mathcal{X}_2 \) (the total number of components of members of \(\mathcal{K} \)) is minimal. This implies that for each \(K' \in \mathcal{K}_2 \) and \(i = 1, 2 \), there exists a \(K^0 = K^0(C_i') = K^0(K', i) \in \mathcal{K} \) such that \(\pi \{ K \in \mathcal{K} : K \neq K^0 \} \subset C_i' \).

We shall show that \(C_i' \cap K \neq \emptyset \) for all \(K' \in \mathcal{K}_2 \), \(K \in \mathcal{K} \), and \(i = 1, 2 \). Let us assume, to the contrary, that there exists \(K' \in \mathcal{K}_2 \), \(K \in \mathcal{K} \), and \(i = 1 \) or 2 such that \(C_i' \cap K = \emptyset \). (Without loss of generality we shall assume \(i = 1 \).) Since \(\emptyset \neq \pi \{ K \in \mathcal{K} : K \neq K^0(K', 1) \} \subset C_1' \), it follows that \(K_0 = K^0(K', 1) \). Then \(C_1' \cap K = \emptyset \) for all \(K \neq K^0 \); also \(C_i' \cap K \neq \emptyset \) for all \(K \in \mathcal{K} \), since otherwise \(K' \cap K \cap K_0 \subset (C_i' \cap K_0) \cup (C_i' \cap K) = \emptyset \) would contradict the assumption that any \(3 < 4 \leq 2h \) members of \(\mathcal{K} \) have a nonempty intersection. Therefore, for each \(K \neq K_0 \), \(c(K' \cap K) = 2 \); hence, for some component \(C_j \) of \(K \) we have \(K \cap C_j = C_j \cap C_j' \). Now

\[
\pi \{ C_j : K \in \mathcal{K}, K \neq K_0 \} = C_1' \cap \pi \{ C_j : K \in \mathcal{K}, K \neq K_0 \} = C_1' \cap \pi \{ K \in \mathcal{K} : K \neq K_0 \} \subset C_1' \cap C_1' = \emptyset.
\]

Since \(\mathcal{C} \) has the Helly property of order \(h \) it follows that for some subset \(\mathcal{K}_0 \) of \(\mathcal{K} \), such that \(K_0 \in \mathcal{K}_0 \) and with card \(\mathcal{K}_0 = h_0 \leq h \), we have \(\pi \{ C_j : K \in \mathcal{K}_0 \} = \emptyset \). For the family \(\mathcal{K}^* = \{ K', K_0 \} \cup \mathcal{K}_0 \) we have therefore \(\pi \mathcal{K}^* \subset (C_1' \cap K') \cup (C_1' \cap \pi \mathcal{K}_0) = \emptyset \), although card \(\mathcal{K}^* \leq h_0 + 2 \leq h + 2 \leq 2h \). This contradiction establishes our assertion.

Next, let \(K^* \in \mathcal{K}_2 \) be chosen arbitrarily. For each \(K \in \mathcal{K}_2 \) it follows from the above and from \(c(K' \cap K) \leq 2 \) that \(c(K^* \cap K) = 2 \) and that different components of \(K \) intersect different components of \(K^* \). Let the components of \(K \) be re-labeled, if necessary, in such a way that \(C_i' \cap C_i' \neq \emptyset \) for \(i = 1, 2 \). We claim that for all \(K', K'' \in \mathcal{K}_2 \) we have \(C_1' \cap C_1'' \neq \emptyset, i = 1, 2 \). Indeed, otherwise we would have (since each component of one set intersects every other set), \(C_1' \cap C_1'' = C_1' \cap C_1'' = \emptyset \), and therefore \(K^* \cap K' \cap K'' = \emptyset \), which is impossible. Thus, for any \(K', K'' \in \mathcal{K}_2 \),

\[
C_1' \cap C_1'' = \begin{cases} \emptyset & \text{if } i \neq j, \\ \neq \emptyset & \text{if } i = j. \end{cases}
\]

Now we consider the families \(\mathcal{C}_i = \mathcal{K}_1 \cup \{ C_j : K \in \mathcal{K}_2 \} \) for \(i = 1, 2 \). The assumption \(\pi \mathcal{K} = \emptyset \) implies that \(\pi \mathcal{C}_i = \emptyset \) for \(i = 1, 2 \). Since \(\mathcal{C}_1 \subset \mathcal{C}_2 \),
there exist \(h \) or less members of \(\mathcal{C}_i \) whose intersection is empty, \(i = 1, 2 \). But then the intersection of the corresponding members of \(\mathcal{K} \) is also empty, although it involves at most \(2h \) members of \(\mathcal{K} \). The contradiction reached proves the theorem for finite \(k \).

(ii) Let \(k \) be infinite, \(k < \gamma^* \), and the theorem true for all families with less than \(k \) members. Let \(\omega \) be the initial ordinal of \(k \), let \(A \) be the set of ordinals \(A = \{ \alpha : \alpha < \omega \} \), and let \(\mathcal{K} = \{ K_\alpha : \alpha < \omega \} \). By the inductive assumption we have \(\cap_{\alpha < \mu} K_\alpha \neq \emptyset \) for each \(\mu < \omega \). If for some \(K_\alpha \) one of its components does not intersect some \(K_\beta \), we omit this component and take the other component to be the new \(K_\alpha \). By the inductive assumption, the new \(K_\alpha \) satisfy \(\cap_{\alpha < \mu} K_\alpha \neq \emptyset \) for all \(\mu < \omega \). From here on we proceed as in the final part of (i): we re-label (if necessary) the components of some \(K_\alpha \) with \(c(K_\alpha) = 2 \), construct the families \(\mathcal{C}_i \) and derive a contradiction from the assumption that \(\cap_{\alpha < \omega} K_\alpha = \emptyset \). This terminates the proof of Theorem 3.

4. Remarks. 1. Theorem 2 fails if \(\text{card} \, \pi \mathcal{K} \) is infinite and \(\mathcal{K}' \) is assumed to satisfy \(\text{card} \, \mathcal{K}' < \text{card} \, \pi \mathcal{K} \). E.g., starting from the family \(\mathcal{S} \) (preceding Definition 3), with \(\text{card} \, \omega = k > \aleph_0 = \text{card} \, \omega_0 \), let \(\mathcal{K} = \{ [\omega_0, \alpha] \cup [\alpha + \omega_0, \omega) : \alpha \text{ limit ordinal } < \omega \} \). Then \(c(\pi \mathcal{K}) = k \), but the intersection of any \(k' < k \) members of \(\mathcal{K} \) has only \(k' \) components. Similar examples are easily found for \(c(\pi \mathcal{K}) = \aleph_0 \).

2. Probably the most interesting immediate application of Theorem 3 is to convex sets in \(E^2 \). To satisfy the condition of nonadditivity we may consider, e.g., families consisting only of closed (or only of open) convex sets. The following example shows that Theorem 3 does not hold if \(\mathcal{C} \) is, e.g., the family of all convex sets in \(E^2 \). (Simple examples of a similar nature show the necessity of nonadditivity assumptions in Theorem 2.) Let \(D \) denote a closed disc with center 0. Let \(K_0 \) be obtained from \(D \) by deleting 0. Let \(x_i, i = 1, 2, \ldots, 6 \), be equidistant points on the boundary of \(D \), \(x_i = x_{i+6} \). For each \(i, 1 \leq i \leq 6 \), let \(K_i \) be obtained from \(D \) by deleting the open small arc of \(\text{Bd} \, D \) determined by \(x_{i-1} \) and \(x_{i+1} \), and the open sector determined by these two points and 0. Then each \(K_i, 0 \leq i \leq 6 \), as well as the intersection of any two \(K_i \), is the disjoint union of two convex sets, and any six \(K_i \) have a nonempty intersection. Nevertheless, \(\cap_{i=0}^6 K_i = \emptyset \). As is easily verified, the same reasoning applies to the case where 7 or 8 equidistant points are chosen on \(\text{Bd} \, D \). We conjecture that for the family of all convex sets in \(E^2 \) a result analogous to Theorem 3 holds, with 9 instead of \(2h \).

3. The following statement (with obvious refinements) is conjectured: If \(\mathcal{C} \) is an intersectional and nonadditive family with un-
limited Helly property of order \(h \) and if \(\mathcal{K} \subseteq [\mathcal{C}]_n \) is such that the intersection of any 2, 3, \(\ldots \), \(n \) members of \(\mathcal{K} \) also belongs to \([\mathcal{C}]_n \), then \(\mathcal{K} \) has the unlimited Helly property of order \(nh \). Simple examples show that \(nh - 1 \) may not be substituted for \(nh \) in this conjecture. If \(\mathcal{C} \) is the family of segments in \(E^1 \), the conjecture is easily provable.

4. Let \(\mathcal{C}^{(n)} \) denote the family of all compact, convex subsets of \(E^n \); in \([1]\), a function \(\Delta(K) \), with \(0 \leq \Delta(K) \leq +\infty \), was defined for all compact sets \(K \subseteq E^n \) in such a way that \(\Delta(K) < \infty \) if and only if \(K \subseteq [\mathcal{C}^{(n)}]_{K'} \). Theorem 2 of \([1]\) may be formulated as follows: For any finite \(n \geq 1 \) and real \(d < \infty \) there exists a finite \(h = h(n, d) \) such that the family \(\{ K \subseteq [\mathcal{C}^{(n)}]_{K'} : \Delta(K) \leq d \} \) has the unlimited Helly property of order \(h \). By applying the methods of \([1]\) it may be shown that for each finite \(n \geq 1 \) and \(d < \infty \) there exists a finite \(k = k(n, d) \) such that \(\Delta(K) \leq d \) implies \(K \subseteq [\mathcal{C}^{(n)}]_k \).

REFERENCES

University of California, Los Angeles