ON A CLASS OF DOUBLY TRANSITIVE GROUPS

J. L. ZEMMER

The purpose of this note is to prove the following.

THEOREM. Let G be a group of permutations on a set \mathcal{M}. If (i) G is doubly transitive and only the identity fixes two letters, and (ii) the subgroup fixing one letter is Abelian, then G is isomorphic to the group of affine transformations $x \rightarrow ax + b$, $a \neq 0$, on a field.

This theorem is related to a result of Hall [2, Theorem 5.6], which states that if a group G satisfies condition (i) above and in addition either

(i') \mathcal{M} is finite,

or

(i'') for some $i, j \in \mathcal{M}$ there is at most one element of G mapping i into j which displaces all of the letters, then G is isomorphic to the group of affine transformations $x \rightarrow ax + b$, $a \neq 0$, on a near-field. A near-field is an algebraic system $(K, +, \cdot)$ consisting of a set K and two binary operations $+$ and \cdot satisfying:

(a) $K(+) \text{ is an Abelian group with identity } 0$,
(b) the nonzero elements of K form a group with respect to \cdot with identity 1,
(c) $x(y+z) = xy + xz$ for $x, y, z \in K$,
(d) $0 \cdot a = 0$ for each $a \in K$,
(e) if $a, b, c \in K$, $a \neq b$, the equation $au = bu + c$, has a unique solution u in K.

In [1], Gorenstein has called an independent ABA group, any group H which contains two subgroups A and B such that for $x \in H$, either $x \in A$, or x can be represented uniquely in the form a_1ba_2, $a_1, a_2 \in A$, $1 \neq b \in B$. The proof of the Theorem will consist of first showing that a doubly transitive group G, in which only the identity fixes two letters, is a special kind of independent ABA group. This is a corollary of Lemma 2. Using the structure of G as an independent ABA group, it will then be shown that, when A is Abelian, G satisfies condition (i'') of Hall's theorem, from which our theorem follows at once.

It should be pointed out that in the finite case Hall's result [2, Theorem 5.6] follows almost immediately from the corollary of

Received by the editors April 21, 1960 and, in revised form, August 8, 1960.

1 This work was supported by the National Science Foundation.

2 The author is indebted to the referee for several suggestions, in addition to his pointing out the validity of Lemma 2.
Lemma 2 together with a result of Gorenstein [1, Theorem 6].

The original version of this paper began with the Corollary to Lemma 2. The referee has suggested a more general lemma relating doubly transitive groups to certain kinds of ABA groups. This is stated as Lemma 2. To state Lemma 2 it is necessary first to generalize the notion of independent ABA group. This will be done with the aid of Lemma 1.

A group G with subgroups A and B is called an ABA group if for $x \in G, x = a_1 b a_2$, where $a_1, a_2 \in A$, $b \in B$. If G is an ABA group, and $b \in B$, $b \neq e$, the identity, define $L(G)$ and $R(G)$ as follows:

$$L(G) = \{ x \in A \mid b = x y b \text{ for some } y \in A \}$$

$$R(G) = \{ x \in A \mid b = y b x \text{ for some } y \in A \}$$

Lemma 1. If G is an ABA group with B of order two, then $L(G)$ and $R(G)$ is a subgroup of A, say A'. Further, if A' is normal in A then A' is normal in G.

Proof. Let $x \in L(G)$, and choose y so that $b = x y b$. Then $b = b^{-1} = (x y b)^{-1} = y^{-1} b x^{-1}$, hence $y b x = b$ and $x \in R(G)$. Thus, $L(G) \subseteq R(G)$. A slight modification of this argument shows that $R(G) \subseteq L(G)$; it follows that $L(G) = R(G)$. Again, let $x \in A' = L(G) = R(G)$; then $b = x y b = y^{-1} b x^{-1}$, which implies $x^{-1} \in A'$. If $x_1, x_2 \in A'$ then $b = x_1 b y_1$, $b = x_2 b y_2$. Clearly $b = x_1 (x_2 b y_2) y_1 = x_1 x_2 b y_2 y_1$, and A' is a subgroup of A.

If A' is a normal subgroup of A, and $x \in A'$, $g \in G$, then $g^{-1} x g = a_1^{-1} b a_2^{-1} x a_1 b a_2 = a_1^{-1} b x_1 b a_2$, where $x_1 \in A'$. Since $b = x_1 b y_1$, $b x_1 b = y^{-1} x^{-1} \in A'$. Hence $g^{-1} x g = a_1^{-1} y b x a_2 \in A'$. Thus A' is normal in G.

The following definition is a generalization of an independent ABA group for the special case where B has order two. An ABA group G, where B has order two, is called an n-independent ABA group if n is the order of the subgroup A', described in Lemma 1.

Lemma 2. If G is a doubly transitive group with subgroup fixing two letters finite, of order n, then G is an n-independent ABA group.

Proof. Let G be a group satisfying the hypotheses of the lemma. Denote by 0 and 1 a pair of distinct letters of the set on which G acts. Let A be the subgroup of G which fixes 0, and A' the subgroup of A which fixes 0 and 1. If c is an element of G which interchanges 0 and 1, then the subgroup, $\{A', c\}$ of G generated by A' and c is finite of order $2n$. Thus, $\{A', c\}$ contains an element of order two. The double transitivity of G implies the existence of an element b, of order two, which interchanges 0 and 1.

Now, let $g \in G$, $g(0) = \alpha$, $g(1) = \beta$, then $\alpha \neq \beta$. If $\alpha = 0$, then $g \in A$;
if $\alpha \neq 0$, let a_1 be an element of A such that $a_1(1) = \alpha$. Since $a_1(1) = \alpha \neq \beta$, it follows that $a_1^{-1}(\beta) \neq 1$, and hence $ba_1^{-1}(\beta) = \eta \neq 0$. Let a_2^* be an element of A such that $a_2^*(1) = \eta = ba_1^{-1}(\beta)$; then $a_1ba_2^*(1) = \beta$, and $a_1ba_2(0) = a_1(0) = a_1(1) = \alpha$. It follows that $(a_1ba_2^*)^{-1}g$ fixes both 0 and 1, hence $(a_1ba_2^*)^{-1}g = a \in A'$, and $g = a_1ba_2^* a = a_1ba_2$. Thus G is an ABA group.

With the notation of Lemma 1, let $x \in L(G) \subseteq A$, so that $b = xby$ for some y in A. Since $x \in A$, $x(0) = 0$, and since $x = by^{-1}b'$, $x(1) = by^{-1}b(1) = by^{-1}(0) = b(0) = 1$. Thus x fixes 1 as well as 0 and $x \in A'$, whence $L(G) \subseteq A'$. Conversely, let $a \in A'$; then $ba^{-1}b$ fixes 0 and 1. Thus, $ba^{-1}b = a' \in A'$, and $b = aba'$, and $a \in L(G)$. It follows that $A' \subseteq L(G)$. Thus $L(G) = A'$ has order n, and it is seen that G is an n-independent ABA group.

The converse of Lemma 2 is false. Consider, for example, the non-cyclic group of order ten. It is a 5-independent ABA group and is not isomorphic to any doubly transitive group. Several modifications of the converse are true, and a particular one is proved in the following.

Corollary. A group G is doubly transitive, with only the identity fixing two letters if and only if G is an independent ABA group with B of order two.

Proof. Let G be a doubly transitive group in which only the identity fixes two letters. It follows from Lemma 2 that G is a 1-independent ABA group, that is, an independent ABA group with B of order two.

Conversely, let G be an ABA group of this type, and \mathfrak{M} the set of right cosets of A in G. Each $g \in G$ determines a permutation T_g on \mathfrak{M}, namely the mapping $Ax \rightarrow Axg$. The set of mappings $\{T_g, g \in G\}$ forms a group of permutations on \mathfrak{M}, and it is readily seen that the mapping $g \rightarrow T_g$ is an isomorphism of G onto this permutation group. To see that this group is doubly transitive, let $Ax_1 \neq Ax_2$, $Az_1 \neq Az_2$ be any two pairs of left cosets. Since $x_1x_1^{-1}, z_2z_1^{-1} \in A$, we have $x_1x_1^{-1} = a'ba''$, $z_2z_1^{-1} = \bar{a}b\bar{a}$. Let

$$y = x_1^{-1}a''^{-1}z_2;$$

then

$$Ax_1y = Ax_1x_1^{-1}a''^{-1}z_2 = Az_1$$

and

$$Ax_2y = Ax_2x_1^{-1}a''^{-1}z_2 = Aa'ba''a''^{-1}z_2 = Abz_1 = Ab\bar{a}^{-1}z_2 = Az_2.$$}

Finally, to see that no element, other than the identity, has more
than one fixed point, let $Ax_1 \neq Ax_2$ and suppose that for some $y \in G$, $Ax_1y = Ax_1$ and $Ax_2y = Ax_2$. Then $x_1y = a_1x_1$, $x_2y = a_2x_2$, where a_1, $a_2 \in A$. It follows that $y = x_1^{-1}a_1x_1 = x_2^{-1}a_2x_2$, or that

$$a_1x_1x_2^{-1} = x_1x_2^{-1}a_2.$$

But, $x_1x_2^{-1} \in A$, so that $x_1x_2^{-1} = ab$. Thus,

$$a_1ab = abab,$$

which implies $a_1b = ab$, $a_1 = e$, $x_1y = x_1$, $y = e$. Thus G is isomorphic to a doubly transitive group in which only the identity fixes two letters.

Before proceeding to the next two lemmas, we list some lemmas of Hall which will be needed. In [2] Hall proves that in a doubly transitive permutation group with only the identity fixing two letters, the following hold:

I. There exists one and only one element of order 2 which interchanges a given pair of elements of \mathfrak{M}.

II. The elements of order 2 are in a single conjugate class.

Two cases arise from II:

Case 1. The elements of order 2 displace all elements of \mathfrak{M}.

Case 2. Every element of order 2 fixes an element of \mathfrak{M}.

III. In Case 2 there is one and only one element of order 2 with a given fixed point.

IV. If b_1, b_2 are distinct elements of order 2 then b_1b_2 displaces all elements of \mathfrak{M}.

In terms of its representation as an ABA group we see that in Case 1, A contains no element of order 2; and in Case 2, A contains a unique element of order 2, which will be denoted by t.

With the notation of Lemma 2, let A^* be the set of nonidentity elements of A, and let $a \in A^*$. Then $bab \in A$ and hence $bab = \phi(a)b\psi(a)$, where $\phi(a)$, $\psi(a) \in A$. Further, $\phi(a) \neq e \neq \psi(a)$, so that ϕ, ψ are mappings of A^* into A^*. Also since b has order 2, $ba^{-1}b = (bab)^{-1}$, whence, $\phi(a^{-1})b\psi(a^{-1}) = [\phi(a)b\psi(a)]^{-1} = [\psi(a)]^{-1}b[\phi(a)]^{-1}$. From the uniqueness of the representation it follows that

$$\phi(a^{-1}) = [\psi(a)]^{-1}.$$

In the following two lemmas it is assumed that the subgroup A is Abelian. The element t_0 of A will be the identity, e, in Case 1 and the unique element, t, of order two in Case 2.

Lemma 3. If $a \in A$, $a \neq t_0$ then $\psi(t_0a) \cdot \phi(t_0a) = a$.

Proof. First, from $bab = \phi(a)b\psi(a)$, we obtain $ab = b\phi(a)b\psi(a) = \phi^2(a)b\psi(\phi(a))\psi(a)$, whence, $\phi^2(a) = a$, and
Similarly, $\psi^2(a) = a$ and it follows that ϕ, ψ are 1-1 mappings of A^* onto A^*. From $ba_1b = \phi(a_1)b\psi(a_1)$ and $ba_2b = \phi(a_2)b\psi(a_2)$, we obtain,

$$ba_1a_2b = \phi(a_1)b\psi(a_1)\phi(a_2)b\psi(a_2) = \phi(a_1)\phi[\psi(a_1)\phi(a_2)]b\psi[\psi(a_1)\phi(a_2)]\psi(a_2).$$

Also, $ba_1a_2b = \phi(a_1a_2)b\psi(a_1a_2)$, whence,

$$\phi(a_1a_2) = \phi(a_1)\phi[\psi(a_1)\phi(a_2)],
\psi(a_1a_2) = \psi[\psi(a_1)\phi(a_2)]\cdot \psi(a_2).$$

Since A is Abelian we may interchange a_1 and a_2 in the right-hand sides of (3) and (4) to obtain

$$\phi(a_1a_2) = \phi(a_2)\cdot \phi[\psi(a_2)\cdot \phi(a_1)],
\psi(a_1a_2) = \psi[\psi(a_2)\cdot \phi(a_1)]\cdot \psi(a_1).$$

Now, suppose that for some $a \neq e$, we have $\psi(a) \neq e$, so that $[\psi(a)]^{-1}a \neq e$, and $d = \phi([\psi(a)]^{-1}a)$ is defined. It follows that $\phi(d) = [\psi(a)]^{-1}a$, or

$$\psi(a)\phi(d) = a.$$

Upon replacing a_1 by a and a_2 by d in (3), (4), (5) and (6) and using (7), we obtain

$$\phi(ad) = \phi(a)\cdot \phi(a),
\psi(ad) = \psi(a)\cdot \psi(d),
\phi(ad) = \phi(d)\cdot \phi[\psi(d)\cdot \phi(a)],
\psi(ad) = \psi[\psi(d)\phi(a)]\cdot \psi(a).$$

Comparison of (9) and (11) yields,

$$\psi(d) = \psi[\psi(d)\cdot \phi(a)],$$

or

$$d = \psi(d)\phi(a).$$

Replacing $\psi(d)\phi(a)$ by d in (10), we obtain

$$\phi(ad) = \phi(d)\cdot \phi(d).$$

Comparing (8) and (12) we obtain $[\phi(a)]^2 = [\phi(d)]^2$, or $(\phi(a)\phi(d))^{-1} = \phi(a)\phi(d)^{-1} = e$.

In Case 1, we note that $a \neq e$ implies $\psi(a) \neq a$. For otherwise bab
\[\phi(a)ba, \text{ from which it follows that } ba = \phi(a)bab = [\phi(a)]^2ba, \text{ or } [\phi(a)]^2 = e, \text{ which is not possible, since } A \text{ contains no element of order 2. Thus, we have shown that } a \neq e \text{ implies the existence of an element } \alpha \text{ in } A, \text{ such that } \psi(a) \cdot \phi(\alpha) = a \text{ and } (\phi(a) [\phi(\alpha)]^{-1})^2 = e. \] The last equation implies \(\phi(a) = \phi(\alpha) \), whence \(a = \alpha \), and \(\psi(a) \cdot \phi(a) = a \). This completes the proof for Case 1.

In Case 2, \(t_0 = t \), the unique element of order 2 in \(A \). In this case, if \(a \neq e \) and \(a \neq \phi(t) \) then \(\psi(a) \neq a \). Otherwise, we have, as in Case 1, \([\phi(a)]^2 = e \), which implies \(\phi(a) = t \), or \(a = \phi(t) \). Thus, there exists a \(d \in A \) such that \(\psi(a) \cdot \phi(d) = a \) and \((\phi(a) [\phi(d)]^{-1})^2 = e \). This last equation implies that either \(\phi(a) = \phi(d) \) or \(\phi(a) = t\phi(d) \). Suppose that \(\phi(a) = \phi(d) \); then \(a = d \) and we have \(\psi(a) \cdot \phi(a) = a \). Consider the two elements of order 2, \(b \) and \(aba^{-1} \). Since \(a \neq e \), they are distinct, and hence by IV, their product \(bab^{-1} \) displaces all elements of \(A \). We see, however, that \(bab^{-1} = \phi(a)ba^{-1} \), and since \(\psi(a) \cdot \phi(a) = a \), \(\psi(a)a^{-1} = [\phi(a)]^{-1} \), and hence \(bab^{-1} = \phi(a)ba^{-1} [\phi(a)]^{-1} \) is conjugate to \(b \). Since \(b \) fixes an element of \(A \), so do its conjugates. This contradiction implies \(\phi(a) = t\phi(d) \). We see, then, that for \(a \neq e \), \(a \neq \phi(t) \),

\[(13) \psi(a) \cdot \phi(a) = ta. \]

If \(a = \phi(t) \), then \(\psi(a) \cdot \phi(a) = \psi(\phi(t)) \cdot t = [\psi(t)]^{-1} \cdot t \), by (2). Further, by (1) \([\psi(t)]^{-1} \cdot t = \phi(t^{-1}) \cdot t = \phi(t) \cdot t \). Hence (13) holds for all \(a \neq e \). It follows that

\[\psi(ta) \cdot \phi(ta) = a \]

for all \(a \neq t \). This completes the proof of the lemma.

The next lemma follows readily from the preceding one.

Lemma 4. With \(t_0 \) defined as in Lemma 3, if \(a \in A \), \(a \neq t_0 \) then there exists an \(x \in A \) such that \([\psi(x)]^{-1} \cdot x = a \).

Proof. Since \(a \neq t_0 \), \(ta \neq e \). Let \(x = \phi(t_0a) \). By (2) we have \(\psi(x) = \psi(\phi(t_0a)) = [\psi(t_0a)]^{-1} \), and hence \([\psi(x)]^{-1} = \psi(t_0a) \). Thus, \([\psi(x)]^{-1} \cdot x = \psi(t_0a) \cdot \phi(t_0a) = a \), by Lemma 3.

Proof of the theorem. A group \(G \), satisfying the hypotheses of the theorem is, by the Corollary to Lemma 2, an independent \(ABA \) group, with \(B \) of order two. As such it can be represented isomorphically as a group of permutations of the right cosets \(\{ A \alpha \} \) of \(A \) in \(G \). To see that \(G \) is isomorphic to the group of affine transformation on a near-field, it is sufficient, in view of Hall's theorem, to show that there is exactly one element \(g \in G \) which maps \(A \) into \(Ab \) and displaces every coset. It is clear that the set of elements of \(G \) which map \(A \) into \(Ab \) are all of the form \(ab \), where \(a \) ranges over \(A \). From IV
it follows that \(t_0 \cdot b \) displaces all of the cosets. Suppose then that \(a \neq t_0 \). By Lemma 4 there exists an \(x \in A \) such that \([\psi(x)]^{-1} \cdot x = a \). Let \(a' = xa^{-1} \); then \(x = a'a \) and we have \([\psi(a'a)]^{-1} \cdot a'a = a \). Hence, \(a' = \psi(a'a) \). We then see that the coset \(Aba' \) is fixed by \(ab \), thus \((Aba')ab = A\psi(a'a)b\psi(a'a) = Aba' \). That is, of all the elements \(ab \), mapping \(A \) into \(Ab \), only \(t_0 \cdot b \) displaces all of the cosets. Thus, \(G \) is isomorphic to the group of affine transformations on a near-field \((K, +, \cdot) \), in which the multiplicative group \(K(\cdot) \) is isomorphic to the subgroup \(A \) of \(G \), and hence is Abelian. Since a commutative near-field is a field, the proof of the theorem is completed.

References

University of Missouri