ON THE SPECTRUM OF A CONTRACTION

M. SCHREIBER

1. Introduction. In this note we present several results on the spectrum of a contraction. The first is an extension to the approximate point spectrum of a result of Nagy and Foias, on the relation of the point spectrum of a contraction and that of its unitary dilation, which has several corollaries. The second is a simple solution to a problem in spectral mapping raised in [2]. Finally we have a result on the point spectrum of a class of contractions discussed in [3]. For the background on unitary dilations see [4] or [5].

2. Arbitrary contractions. In Theorem 1 of [6] it is shown that the set of eigenvalues of modulus 1 of a contraction A coincides with that of its unitary dilation U. Less is true for the approximate point spectrum $\Sigma_{ap}A$. (See [1] for the definition of Σ_{ap}.)

Proposition. Let A be a contraction on a Hilbert space H and let U be a unitary dilation on a (larger) space K. Then $\mu = e^{i\alpha} \in \Sigma_{ap} A$ if and only if $\mu \in \Sigma_{ap} U$ with approximate eigenvectors in H.³

(Thus, if $\mu \in \Sigma_{ap} U$, $|\mu| = 1$, but the approximate eigenvectors are not in H, then $\mu \not\in \Sigma_{ap} A$.)

Proof. Let P be the projection of K onto H. If there are unit vectors $x_n \in H$ with $\|Ux_n - \mu x_n\| \rightarrow 0$ as $n \rightarrow \infty$, then $\|Ax_n - \mu x_n\| = \|Pu_n - \mu x_n\| \leq \|Ux_n - \mu x_n\| \rightarrow 0$ as $n \rightarrow \infty$, so that $\mu \in \Sigma_{ap} A$. For the converse, there is clearly no loss of generality in taking $\mu = 1$, and we suppose there are unit vectors $x_n \in H$ such that

$$\|Ax_n - x_n\| \leq 1/n, \quad n = 1, 2, \ldots,$$

from which it follows that $\|Ax_n\| \geq 1 - 1/n$. Again let P be the projection of K onto H, and write H^\perp for the orthogonal complement of H in K. Now $Ux_n = u_n + v_n$, with $u_n \in H$, $v_n \in H^\perp$, and $\|u_n\|^2 + \|v_n\|^2 = \|u_n\|^2 = \|x_n\|^2 = 1$. Since $u_n = Pu_n = Ax_n$, we have

Received by the editors August 3, 1960 and, in revised form, October 3, 1960.

¹ Research for this paper was sponsored by the National Science Foundation Contract No. G5253.

² We are grateful to the referee for simplifications of the arguments in this and the following paragraph.

³ By a unitary dilation of an operator A on H is meant a unitary operator U on a space $K \supseteq H$ such that $PUx = Ax$ for all $x \in H$, where P is the projection of K onto H. In [4, 5] a unique minimal such dilation is studied, but for present purposes minimality is irrelevant.
1 = \| A x_n \|^2 + \| v_n \|^2 \geq 1 - \frac{2}{n} + \frac{1}{n^2} + \| v_n \|^2,

so that

\[\| v_n \|^2 \leq \frac{2}{n} - \frac{1}{n^2}. \]

The components in \(H \) and \(H_1 \) of \(U x_n - x_n \), the vector whose norm is to be estimated, are \(A x_n - x_n \) and \(v_n \), respectively, as is clear, and so

\[\| U x_n - x_n \|^2 = \| A x_n - x_n \|^2 + \| v_n \|^2 \leq \frac{1}{n^2} + \frac{2}{n} - \frac{1}{n^2} = \frac{2}{n}, \]

by the displayed inequalities, whence \(\| U x_n - x_n \| \leq (2/n)^{1/2} \) and the proof is complete.

[Added in proof. Professor Sz.-Nagy has remarked in a private communication that the proposition may be proved very simply as follows. With notation as above, for \(x \in H \) we have

\[\| U x - x \|^2 = \| U x \|^2 + \| x \|^2 - 2 \Re (U x, x) = 2 \| x \|^2 - 2 \Re (T x, x) = 2 \Re (x, x - T x) \leq 2 \| x \| \| x - T x \|, \]

and the conclusion follows at once.]

Corollary 1. The approximate eigenvalues of modulus 1 of \(A^* \) are the complex conjugates of those of \(A \).

Proof. If \(\mu = e^{i \alpha} \in \Sigma_{ap} A \) then \(\mu \in \Sigma_{ap} U \) with approximate eigenvectors in \(H \), so that given \(\epsilon > 0 \) there exists a unit vector \(x \in H \) with \(\| U x - \mu x \| < \epsilon \). Hence \(\| U^* x - \bar{\mu} x \| < \epsilon \), trivially, and by the proposition again it follows that \(\| A^* x - \bar{\mu} x \| < \epsilon \), as was to be shown.

The same result for the point spectrum is given in [5, p. 88].

Corollary 2. Near a gap in \(\Sigma U \) there can be only residual spectrum of \(A \).

Proof. By a gap in \(\Sigma U \) is meant an open arc of the unit circle which lies in the complement of \(\Sigma U \), and the assertion is that every such gap is contained in a planar open set disjoint from \(\Sigma_{ap} A \). The proof is based on the closure of \(\Sigma_{ap} A \). Suppose this for the moment. Let \(G \) be a gap in \(\Sigma U \) and \(e^{i \alpha} \in G \). Then there must be an open circle \(C_\alpha \) centered at \(e^{i \alpha} \) with \(C_\alpha \cap \Sigma_{ap} A = \emptyset \), else \(e^{i \alpha} \) would be a limit point of \(\Sigma_{ap} A \), hence in \(\Sigma_{ap} A \), and therefore by the proposition a member of \(\Sigma_{ap} U \), contrary to supposition. The open set required by the corollary is then \(U_\alpha C_\alpha \). We complete the proof by showing that \(\Sigma_{ap} A \) is closed,
for any bounded A. Let $\lambda_n \in \Sigma_{ap}A$, $\lambda_n \to \lambda$. If $\lambda \notin \Sigma_{ap}A$ then there exists $\varepsilon > 0$ such that $\| (A - \lambda I)x \| \geq \varepsilon$ for all unit vectors x. Then $|\lambda - \lambda_n| = \| (A - \lambda I)x - (A - \lambda_n I)x \| \geq \varepsilon - \| (A - \lambda_n I)x \| \geq \varepsilon - |\lambda - \lambda_n|$ for all unit vectors x. In particular, if $|\lambda_n - \lambda| \leq \varepsilon/2$ then $\| (A - \lambda_n I)x \| \geq \varepsilon/2$ for all unit vectors, so that $\lambda_n \in \Sigma_{ap}A$, contrary to supposition.

A side condition such as the one employed in the proposition (that the approximate eigenvectors for U be in H) is seen to be necessary by taking for A any contraction with no spectrum on $\{ \| z \| = 1 \}$, whereas $\Sigma U \subseteq \{ \| z \| = 1 \}$ and $\Sigma U = \Sigma_{ap}U$ (see [1, p. 51]). In particular we know that for such A the approximate eigenvectors of its dilation U cannot be in H.

3. A spectral mapping problem. In [2] we studied the preservation of $\Sigma_{ap}A$ under general mappings and noted that in general it is not preserved in the reverse direction (that is, $\alpha \in f^{-1}(\beta)$ need not be an eigenvalue of A when β is an eigenvalue of $f(A)$). On the other hand it is trivially clear that if for all function f the number $f(\mu)$ is an eigenvalue of $f(A)$ then μ is an eigenvalue of A. The problem is to find a nonvacuous condition sufficient for preservation of $\Sigma_{ap}A$ in the reverse direction.

Let $C_n(f)$ be the nth Taylor coefficient of f, and write f_t for the function $f_t(s) = f(ts)$.

Proposition. Let A be a contraction, and f a fixed function analytic for $\| z \| < 1$. If $f_t(A)x = f_t(\mu)x$ for infinitely many (complex) t converging inside the unit circle, then $A^m x = \mu^m x$, where m is the least $n > 0$ such that $C_n(f) \neq 0$. Conversely, if $A^m x = \mu^m x$ and $C_k(f) = 0$ for $0 \leq k < m$ then $f_t(A)x = f_t(\mu)x$ for all $|t| < 1$.

Proof. By hypothesis $f(z) = \sum_0^\infty C_n(f) z^n$ converges for $\| z \| < 1$, so $f_t(z) = \sum_0^\infty C_n(f) t^n z^n$ has radius of convergence $r(t) > 1$ for $|t| < 1$. Since $\| A \| \leq 1$ the operator series $\sum_0^\infty C_n(f) A^n t^n$ converges in norm, for $|t| < 1$, to an operator which we define as $f_t(A)$, so that

$$(f_t(A)x, y) = \sum_0^\infty C_n(f)(A^nx, y)t^n = F(t), \quad |t| < 1,$$

is an analytic function of t, for each pair x, y of vectors. (This definition of $f_t(A)$ agrees with that of [4], $(f_t(A)x, y) = \int f_t(e^{it})dF(s)x, y$), for by uniform convergence the integral is equal to

$$\sum_0^\infty C_n(f)t^n \int e^{ins}dF(s)x, y = \sum C_n(f)t^n(A^nx, y),$$
and it is easy to see also that it agrees with the classical definition by the Cauchy integral formula. Similarly \(f_s(\mu)(x, y) = (f_s(\mu)x, y) \) may be expanded in the series

\[
(f_s(\mu)x, y) = \sum_{n=0}^{\infty} C_n(f)(\mu^n x, y) t^n = G(t), \quad |t| < 1.
\]

Now for the first assertion of the proposition we have by hypothesis that \(F = G \) on an infinite set with limit point inside the circle. Since \(F \) and \(G \) are clearly analytic for \(|t| < 1 \) we conclude that \(F(t) = G(t) \), \(|t| < 1 \). This means that, for all \(n \geq 0 \) and all \(y \in H \),

\[
c_n(f)(A^nx, y) = c_n(f)(\mu^n x, y),
\]

and the assertion now follows by cancellation of \(c_n(f) \). The second assertion goes in the same spirit. The hypotheses involve \(F(t) = G(t) \) for \(|t| < 1 \) and therefore \(f_s(A)x, y) = (f_s(\mu)x, y) \) for all \(y \) and \(|t| < 1 \), which yields the conclusion.

4. A contraction \(A \) is absolutely continuous if there exists a function \(K(t, x, y) \in L_1(0, 2\pi) \) for every pair of vectors \(x, y \), such that

\[
(A^{(n)}x, y) = \frac{1}{2\pi} \int_0^{2\pi} e^{int} K(t, x, y) dt
\]

for all \(n = 0, \pm 1, \pm 2, \cdots \) (here \(A^{(-n)} = A^{*n} \) (see [3])). This is a smoothness condition which reflects itself in the spectrum of \(A \) as follows:

Proposition. An absolutely continuous contraction has no eigenvalues of modulus 1.

Proof. Let \(A \) be absolutely continuous. The representation above for \(A \) in terms of \(K \) amounts to the assertion that \(K \) has the Fourier expansion

\[
K(t, x, y) \sim \sum_{n=-\infty}^{\infty} e^{-int}(A^{(n)}x, y).
\]

Now suppose that \(Ax = e^{i\beta}x \) for some unit vector \(x \) and \(0 \leq \beta \leq 2\pi \). It then follows from [5, p. 88] that \(A^{(n)}x = e^{in\beta}x \) for \(n = 0, \pm 1, \pm 2, \cdots \). Hence the Fourier expansion for \(K(\cdot, x, x) \) reduces to

\[
K(t, x, x) \sim \sum_{n=-\infty}^{\infty} e^{in\beta} e^{-int}.
\]

But \(K(\cdot, x, x) \in L_1 \), so that its Fourier coefficients \(e^{in\beta} \) must tend to 0. This contradiction completes the proof.
I. NAMIOKA

1. Lebesgue's bounded convergence theorem has become a powerful tool in the theory of linear topological spaces, and recently, for a treatment of weak convergence of sequences or for a proof of Krein's theorem, the tendency is to use it in an essential way.¹ The following is a useful substitute for the bounded convergence theorem stated in the language of linear space theory.

Theorem 1. Let C be a compact (or countably compact)² subset of a (real or complex) linear topological space E, and let $\{f_n\}$ be a sequence of continuous linear functionals on E which is uniformly bounded on C. If, for each x in C, $\lim n f_n(x) = 0$, then the same equality holds for every x in the closed convex extension of C.

In case C is compact and Hausdorff, the proof of Theorem 1 may run as follows: Let F be the Banach space of all scalar-valued continuous functions on C with the supremum norm; then there is a linear transformation T on the dual E^* of E into F defined by the equation $T(f) = f|_C$. Let x_0 be a point in the closed convex extension of C. Then one can define a bounded functional ϕ on the range of T

Received by the editors October 20, 1960.

¹ I am indebted to the referee for the remark that, in Dunford and Schwartz [2], Krein's theorem is proved using Riesz-Markoff-Kakutani's theorem but not Lebesgue's bounded convergence theorem. Their proof relies on the theory of integration of vector-valued functions.

² A space X is countably compact if each sequence in X has a cluster point.