ON THE MAXIMUM MODULUS AND THE MAXIMUM TERM OF AN ENTIRE DIRICHLET SERIES

A. G. AZPEITIA

1. We consider the Dirichlet series

\[f(s) = \sum_{n=0}^{\infty} a_n e^{\lambda_n s} \quad (s = \sigma + it; \lambda_0 = 0, \lambda_n < \lambda_{n+1} \to \infty) \]

which we assume to be absolutely convergent for all \(s \). We define the maximum modulus over a vertical line as

\[M(\sigma) = \text{l.u.b.} \left| f(\sigma + it) \right| \]

and the maximum term as

\[m(\sigma) = \max_{n \geq 0} \left| a_n e^{\lambda_n (\sigma + it)} \right|. \]

Finally, the index function \(n(\sigma) \) is given by

\[n(\sigma) = \max \left\{ n \left| m(\sigma) = \left| a_n e^{\lambda_n \sigma} \right| \right. \right\}. \]

The function \(\log M(\sigma) \) is divergent to \(+\infty\) for \(\sigma \to +\infty \) [1, p. 77] and convex [2, p. 240]. By analogy with the case of Taylor series, [3, pp. 37–38] and making use of the absolute convergence of (1), it is an easy matter to show that the same properties hold for \(m(\sigma) \), and that \(n(\sigma) \) is a step function divergent to \(+\infty\) for \(\sigma \to +\infty \), continuous from the right for all \(\sigma \), having only a finite number of discontinuities in every infinite interval of the form \((-\infty, b)\), and related to \(m(\sigma) \) by the formula, valid for all \(\sigma \) and \(\sigma' \),

\[\log m(\sigma) = \log m(\sigma') + \int_{\sigma'}^{\sigma} \lambda_n(\sigma') d\sigma. \]

It is also known [4, p. 170, Theorem IX] that

\[m(\sigma) \leq M(\sigma). \]

If we denote by \(n_0 \) the index of the first \(a_n \) which is not zero and by \(\{ \sigma_i \} (i=0, 1, 2, \ldots) \) the monotonic increasing sequence of discontinuities of \(n(\sigma) \) (taking \(\sigma_0 = -\infty \) for the sake of completeness) then

Received by the editors November 2, 1960.

1 This work is part of research supported by a grant from the National Science Foundation (NSF-G-14142).
the sequence of indices defined by \(n_i = \sigma_i \) (\(i = 0, 1, 2, \cdots \)) is such that

\[
(4) \quad n(\sigma) = n_i \quad \text{for } \sigma_i \leq \sigma < \sigma_{i+1}.
\]

2. Since the assumption that the series (1) is absolutely convergent for all \(s \) implies \(\log |a_n|/\lambda_n \to -\infty \), it is possible to construct a Newton-Hadamard polygon for the sequence of points \(P_n \) with coordinates \(\lambda = \lambda_n, \quad y = -\log |a_n| \) in a cartesian plane \((\lambda, y)\). The sequence of vertices of such polygon corresponds to the sequence of indices \(n_i \) and has the property that the slope of the side \(P_{n_{i-1}}P_{n_i} \) is equal to \(\sigma_i \). The proofs of these facts are entirely similar to the ones in the case of Taylor series [5, p. 6; 6, p. 274].

3. Let us now assume that three strictly increasing, divergent sequences \(\{n_i\}, \{\sigma_i\} \) and \(\{\lambda_i\} \) (\(i, n = 0, 1, 2, \cdots ; \lambda_0 = 0, \sigma_0 = -\infty \)) with the \(n_i \) being non-negative integers, and the \(\lambda_i \) such that

\[
(5) \quad \infty \geq \lim \inf \lim_{n \to \infty} \lambda_n/\log n = \gamma > 0
\]

are given, and let us consider the series

\[
(6) \quad \sum_{n=0}^{\infty} A_n e^{\lambda_n s}
\]

where the \(A_n \) are defined in the following way:

\(A_n = 0 \) for \(n < n_0 \), \(A_{n_0} = a \), \(a \) being any arbitrary real constant, and \(A_n = A_{n_{i-1}} \exp[-(\lambda_n - \lambda_{n_{i-1}})\sigma_i] \) for \(n_{i-1} < n \leq n_i \). Since the sequence

\[\{-\log(A_n/A_{n_{i-1}})/(\lambda_n - \lambda_{n_{i-1}})\}\]

is obviously monotonic and divergent, it follows that the sequence of points \(Q_n \) of the plane \((\lambda, y)\) having coordinates \(\lambda = \lambda_n, \quad y = -\log A_n \) defines a Newton-Hadamard polygon whose vertices are \(Q_{n_i} \) and whose sides contain all the points \(Q_n \). This implies that the \(m(\sigma) \) function corresponding to the series (6) is given by

\(m(\sigma) = A_{n_i} \exp(\lambda_{n_i} \sigma) \) for \(\sigma_i \leq \sigma < \sigma_{i+1} \). Finally, we can prove that (6) is absolutely convergent for all \(\sigma \) in the following way: For every given \(s = \sigma + it \) we can select three numbers \(\gamma_1, \gamma_2, K \) such that \(0 < \gamma_1 < \gamma_2 < \gamma \leq \infty \) and \(K > \sigma + (1/\gamma_1) \). Then by (5) we have that from some \(n \) on, \(\lambda_n > \gamma_2 \log n \). Also, since \(\sigma_i \uparrow \infty \), it follows that \(\log A_n < -K\lambda_n \) for all \(n \) large enough. Therefore, there exists some integer \(N \) such that

\[
\sum_{n=N}^{\infty} |A_n e^{\lambda_n s}| < \sum_{n=N}^{\infty} e^{(\sigma - K)\lambda_n} < \sum_{n=N}^{\infty} e^{(1/\gamma_1)\lambda_n} < \sum_{n=N}^{\infty} e^{(\gamma_2/\gamma_1) \log n} = \sum_{n=N}^{\infty} n^{-(\gamma_2/\gamma_1)} < \infty.
\]
Consequently, the series (6) defines an entire function $F(s)$ and if the sequences $\{n_i\}, \{\sigma_i\}, \{\lambda_i\}$ are the ones corresponding to the series (1), and we take $a = |a_{n_0}|$, then both series (1) and (6) have the same index function $n(\sigma)$ and the same maximum term $m(\sigma)$ given by (2).

In addition, their coefficients satisfy the relations $|a_n| \leq A_n$ for all $n = 0, 1, 2, \cdots$ and $|a_{n+i}| = A_{n+i}$ for all $i = 0, 1, 2, \cdots$, and finally

$$M(\sigma) \leq \max_{-\infty < \tau < \infty} \left| F(\sigma + i\tau) \right| = F(\sigma)$$

holds for all σ.

4. We now consider the problem of the asymptotic equivalence of the functions $\log M(\sigma)$ and $\log m(\sigma)$. If $\liminf_{n \to \infty} \log \lambda_n / \log n > 0$, (which implies (5)), holds, and either

$$\limsup_{\sigma \to \infty} \log \log M(\sigma) / \sigma < \infty$$

or, what is equivalent, [7, p. 109, Theorem (2.8)],

$$\limsup_{\sigma \to \infty} \log \log m(\sigma) / \sigma < \infty$$

that is to say, if the function is of finite Ritt order [1, p. 77], then $\log M(\sigma)$ and $\log m(\sigma)$ are asymptotically equivalent, [6, p. 265, Theorem 5].

With no restriction on the order but assuming

$$\liminf_{n \to \infty} (\lambda_n - \lambda_{n-1}) = \beta > 0$$

we will establish sufficient conditions for $\log M(\sigma)$ and $\log m(\sigma)$ to be asymptotically equivalent. We begin by proving the following theorem which generalises the inequality of Valiron [8, p. 32, Theorem 11].

Theorem 1. If the series (1) is absolutely convergent for all s and (8) holds, then for every $\beta_1 < \beta$ and all $\sigma > \sigma(\beta_1)$

$$m(\sigma) \leq M(\sigma) \leq \left[1 + n(\sigma + \delta(\sigma)) + \frac{1}{e^{\beta_1 \delta(\sigma)} - 1} \right] m(\sigma)$$

where $\delta(\sigma)$ is any positive, but otherwise arbitrary, function of σ.

Proof. For every σ, we define the integer k by the equality $n_k = n(\sigma + \delta(\sigma))$, and for every index $m > n_k$ we define the integer p by $n_p \geq m > n_{p-1}$. It follows that $\sigma + \delta(\sigma) < \sigma_k + 1$ and $k < p$ and therefore, since (8) implies (5) and the conclusions of the previous section are valid, we have
\[A_m \exp(\lambda_m \sigma) = a \exp[-(\lambda_{n_1} - \lambda_n)\sigma_1 - \cdots - (\lambda_{n_k} - \lambda_{n_{k-1}})\sigma_k - \cdots - (\lambda_m - \lambda_{n_p})\sigma_p + \lambda_m \sigma] \]
\[= A_{n_k} \exp(\lambda_{n_k} \sigma) \exp[-(\lambda_{n_k+1} - \lambda_{n_k})\sigma_{k+1} - \cdots - (\lambda_m - \lambda_{n_p})\sigma_p + \lambda_m \sigma] \]
\[< m(\sigma) \exp[(\lambda_m - \lambda_{n_k})(\sigma - \sigma_{k+1})]. \]

Now, according to (7), we have for all \(\sigma > \sigma(\beta_1) \)
\[
M(\sigma) \leq F(\sigma) = \sum_{m=0}^{n_k} A_m \exp(\lambda_m \sigma) + \sum_{m=n_k+1}^{\infty} A_m \exp(\lambda_m \sigma) \]
\[
< \left\{ 1 + n_k + \sum_{m=n_k+1}^{\infty} \exp[(\lambda_m - \lambda_{n_k})(\sigma - \sigma_{k+1})] \right\} m(\sigma) \]
\[
\leq \left\{ 1 + n_k + \sum_{m=n_k+1}^{\infty} \exp[(m - n_k)\beta_1(\sigma - \sigma_{k+1})] \right\} m(\sigma) \]
\[
= (1 + n_k + \exp[\beta_1(\sigma - \sigma_{k+1})]/\{1 - \exp[\beta_1(\sigma - \sigma_{k+1})]\})m(\sigma) \]
\[
\leq \{ 1 + n(\sigma + \delta(\sigma)) + 1/[\exp(\beta_1 \delta(\sigma)) - 1]\}m(\sigma) \]

and the theorem is proved.

Finally, we will demonstrate the following result:

Theorem 2. Under the same assumptions of Theorem 1, if there is a positive constant \(\alpha \) such that either
\[
\lim_{\sigma \to \infty} \log \log m(\sigma + \alpha)/\log m(\sigma) = 0 \tag{9} \]
or
\[
\lim_{\sigma \to \infty} \log \log M(\sigma + \alpha)/\log M(\sigma) = 0 \tag{10} \]
then
\[
\lim_{\sigma \to \infty} \log M(\sigma)/\log m(\sigma) = 1. \]

Proof. By (2) and (8), we have, for all \(\sigma \) large enough and any \(\alpha > 0 \) and some positive \(\beta_1 < \beta \):
\[
\log m(\sigma + \alpha) = \log m(\sigma + \alpha/2) + \int_{\sigma + \alpha/2}^{\sigma + \alpha} \lambda_n(z)dz \geq (\alpha/2)\lambda_n(\sigma + \alpha/2) \]
\[
\geq (\alpha/2)\beta_1 n(\sigma + \alpha/2). \]
Therefore, applying Theorem 1 with \(\delta(\sigma) = \alpha/2 \), we obtain
\[
M(\sigma) \leq \{ 1 + 2(\alpha \beta_1)^{-1} \log m(\sigma + \alpha) + 1/[\exp(\beta_1 \alpha/2) - 1]\}m(\sigma) \]
and consequently for every $\epsilon > 0$ there exists a number $\sigma(\epsilon)$ such that $\sigma \geq \sigma(\epsilon)$ implies

\begin{equation}
\log M(\sigma) \leq (1 + \epsilon) \log \log m(\sigma + \alpha) + \log m(\sigma)
\end{equation}

and obviously

\begin{equation}
\log M(\sigma) \leq (1 + \epsilon) \log \log M(\sigma + \alpha) + \log m(\sigma).
\end{equation}

By division of (11) or (12) by $\log m(\sigma)$ or by $\log M(\sigma)$, and using (9) or (10), respectively, we obtain

$$\log M(\sigma)/\log m(\sigma) \leq o(\sigma) + 1$$

or

$$1 \leq o(\sigma) + \log m(\sigma)/\log M(\sigma).$$

Every one of these inequalities combined with (3) implies

$$\lim_{\sigma \to \infty} \log M(\sigma)/\log m(\sigma) = 1.$$

Theorem 2 generalises the result given by San Juan in the case of Taylor series [9, p. 134].

An obvious consequence of Theorem 2 is that if (8) holds, then conditions (9) and (10) are equivalent.

References

University of Massachusetts