LEBESGUE SPACES OF SUMMABLE FUNCTIONS

DAVID M. TOPPING

1. Introduction. The classical theorem of Kakutani [1] provides an elegant characterization of L^1 in terms of its lattice order and special properties of the norm. Much of the difficulty in representing an abstract (L)-space apparently stems from the fact that the end result must in general be a vector lattice whose elements are Lebesgue classes of functions rather than functions themselves. In this paper we give a characterization of L^1, the space of summable functions. Toward this end, we abstract the essential properties of L^1 in the following:

Definition. An (\mathcal{E}, L)-space is a vector lattice V with a seminorm ρ satisfying:

1. $\rho(x+y) = \rho(x) + \rho(y)$ for $x, y \geq 0$.
2. $\rho(|x|) = \rho(x)$ for all $x \in V$.
3. V is complete in the ρ-topology.
4. There is a total family Λ of linear lattice functionals (see §2 for definition) such that the subspace

$$B = \{ x \in V : \| x \| = \sup_{\lambda \in \Lambda} | \lambda(x) | < \infty \}$$

is dense in V under the ρ-topology, and complete under the norm topology given by $\| x \|$.

Main Theorem. Let V be an (\mathcal{E}, L)-space. Then there is a locally compact Hausdorff space E and a unique positive Radon measure μ on E such that V is linearly, latticially and isometrically isomorphic to $L^1(E, \mu)$, the space of all summable functions on E. Of course $V/\rho^{-1}(0)$ is then abstractly identical with $L^1(E, \mu)$.

For example, if we take V to be the space $L^1(X, m)$ of summable functions on a (nontopological) finite measure space (X, S, m) then conditions (1)–(3) are clearly satisfied. For Λ we may take the “point measures” (linear lattice functionals) ϵ_a, $a \in X$ where $\epsilon_a(f) = f(a)$, for f in L^1. B is then the Banach algebra of bounded summable functions and (4) is clearly satisfied.

If we strengthen the above conditions by requiring ρ to be a norm so that V becomes an (AL)-space in Kakutani's sense, then it appears likely that the only such spaces are the l^1 spaces of summable func-

Received by the editors August 9, 1960.

1 This work was supported in part by an NSF grant to Tulane University and constitutes a portion of the author's doctoral dissertation.

773
tions over a discrete space relative to an atomic measure. This question will be considered in a later paper.

2. The auxiliary representation. By a linear lattice functional we mean a linear functional \(\lambda : V \to R \) satisfying \(\lambda(x^+) = (\lambda x)^+ \), for all \(x \in V \), where \(x^+ = x \vee 0 \). Such a functional is evidently positive. Regarding the existence of such functionals we have the following result (Nakayama [3]):

Theorem 1. Let \(V \) be a vector lattice. Then there exists a set \(X \) such that \(V \) is isomorphic, as a vector lattice, to a pointwise linear sublattice of \(R^X \) if and only if \(V \) has a total family of linear lattice functionals.

Thus condition (4) amounts, in part, to assuming that \(V \) is a function lattice. Regarding (4) we observe further that the set \(B \) inherits some rather special properties. For a set \(\Lambda \), we denote by \(m(\Lambda) \) the algebra of all bounded real-valued functions on \(\Lambda \).

Lemma 1. Let \(V \) be a pointwise vector lattice of functions on a set \(\Lambda \) and let \(B = m(\Lambda) \cap V \). Then \(B \) is a lattice ideal in \(V \), and, a fortiori, an algebra.

Proof. Let \(f \in m(\Lambda) \) with \(||f|| > 1 \) where \(||f|| = \sup \{ |f(\lambda)| : \lambda \in \Lambda \} \). Then \(||f^+|| \leq ||f^2|| \); for if we take \(\lambda \in \Lambda \) so that \(|f(\lambda)| > 1 \), then \(|f(\lambda)| < |f^2(\lambda)| \). Again, if \(f \in m(\Lambda), ||f|| > 1 \), then \(f^2 \leq \|f^2\| \cdot |f| \); for we have \(\|f^2\| \cdot |f| - |f^2| = (\|f^2\| - |f|) \cdot |f| \geq 0 \) since \(|f| \leq ||f|| \leq ||f^2|| \). Now if \(g \in B \) and \(f \in V \) with \(|f| \leq |g| \), then \(||f|| \leq ||g|| < \infty \), so \(f \in B \), i.e., \(B \) is a lattice ideal in \(V \). For \(0 \neq f \in B \) we choose \(0 < \epsilon < ||f|| \). Then \(g = (1/\epsilon)f \) has norm \(> 1 \). Hence \(0 \leq g^2 \leq ||g^2|| \cdot |f| = (||g^2||/\epsilon) \cdot |f| \) and by the lattice ideal property \(g^2 \in B \). But \(f^2 = \epsilon g^2 \), so \(f \in B \). Q.E.D.

Reverting now to Theorem 1, we map \(V \) into \(R^\Lambda \) by \(x \to \hat{x} \) where \(\hat{x}(\lambda) = \lambda(x) \) for \(x \in V, \lambda \in \Lambda \). The elements of \(V \) then appear as functions on \(\Lambda \); consequently we shall identify \(V \) and \(B \) with their images under this representation and define the uniform norm on \(B \) by:

\[||f|| = \sup \{ |f(\lambda)| : \lambda \in \Lambda \} = \sup \{ |\lambda(f)| : \lambda \in \Lambda \} \text{ for } f \in B. \]

Condition (4) assures us that \(||f|| \) is finite and that \(B \) is sufficiently large. It should be remarked that this representation is only a vehicle and will be discarded as soon as the desired function space appears.

3. The integral. We now focus our attention on conditions (1) and (2). Let \(V^+ = \{ x \in V : x \geq 0 \} \).

Lemma 2. Let \(v : V^+ \to R \) be a positive additive functional. Then there is a unique positive linear functional \(\mu : V \to R \) agreeing with \(v \) on \(V^+ \).

Proof. See Bourbaki [4, p. 34, Proposition 2].
Lemma 3. Let V be a vector lattice with a semi-norm p. Then (1) and (2) hold if and only if there is a positive linear functional μ on V such that $p(x) = \mu(|x|)$, for all $x \in V$. Moreover, if (1) and (2) hold, μ is uniquely determined.

Proof. Sufficiency. In any vector lattice we have the identities:

\[(1') |x + y| = |x| + |y| \quad \text{for } x, y \geq 0.\]
\[(2') \left(\frac{|x|}{|y|} \right) = \frac{|x|}{|y|} \quad \text{for all } x \in V.\]

The additivity of μ together with the assumption $p(x) = \mu(|x|)$ easily imply (1) and (2).

Necessity and uniqueness. Condition (1) says that p is additive on the positive cone V^+. As in the proof of Lemma 2, we define $\mu(x) = p(x^+) - p(x^-)$. Clearly $p(x) = \mu(|x|) = \mu(|x|)$. Q.E.D.

4. Representation of B. The fact that B is a pointwise algebra of bounded functions (Lemma 1) enables us to adjoin an order unit e (the constant function 1) to B (for definition of an order unit see Kadison [5, p. 3]). Thus for any function f in B we can find an $\alpha \geq 0$ such that $|f| \leq \alpha e$. Let B_α denote the algebra resulting from the adjunction of e to B. Being a function lattice, B_α is manifestly Archimedean in Kadison's sense and the "natural norm" $\|f\| = \inf \{ \alpha : |f| \leq \alpha e \}$ is just the uniform norm inherited from $m(\Lambda)$. By condition (4), B is complete in the uniform norm as is B_α.

We now appeal to a classical representation theorem for vector lattices.

Theorem 2. Let L be an Archimedean vector lattice with order unit e. If L is complete in the norm $\|f\| = \inf \{ \alpha : |f| \leq \alpha e \}$ then one can find a compact Hausdorff space S and a linear lattice isometry of L with $C(S)$.

For the proof, we refer to [2, p. 103, Theorem 3] or to [5, p. 10, Theorem 4.1 and Historical Remarks].

Corollary. B is linearly, latticially and isometrically isomorphic to $C_\alpha(E)$, the Banach algebra of all continuous functions on $E = S - \{ \infty \}$ (locally compact Hausdorff) vanishing at ∞.

We may now identify B with $C_\alpha(E)$ and observe that the positive linear functional μ obtained in §3 is a positive Radon measure on E in the sense of Bourbaki [4]. By (4), $B = C_\alpha(E)$ is dense in V under the p-topology. But the ring of continuous functions with compact supports on E is uniformly dense in $C_\alpha(E)$ and it is easily seen that the former has V as its completion under the p-topology. Thus V is linearly, latticially and isometrically isomorphic to $\mathcal{E}^1(E, \mu)$. Clearly
$V/p^{-1}(0)$ is abstractly identical with $L^1(E, \mu)$. This completes the proof of the main theorem.

5. The compact case. We now consider vector lattices V satisfying (1), (2) and (3) in the definition of $(\mathfrak{E}, \mathfrak{L})$-space and the additional conditions:

$(4')$ V is boundedly σ-complete, i.e., each countable set in V which is bounded above has a least upper bound.

$(4'')$ There is a total family Λ of linear lattice functionals such that the subspace $B = \{x \in V : \|x\| = \sup_{\lambda \in \Lambda} |\lambda(x)| \leq \infty \}$ is dense in V under the p-topology and contains an element e satisfying $\lambda(e) = 1$, for each $\lambda \in \Lambda$.

Theorem 3. Let V be a vector lattice satisfying conditions (1)-(3), (4') and (4''). Then there is a compact Hausdorff space S and a unique positive Radon measure μ on S satisfying $\mu(e) = 1$ such that V is linearly, latticially and isometrically isomorphic to $L^1(S, \mu)$. Moreover, $V/p^{-1}(0)$ is abstractly identical with $L^1(S, \mu)$.

The proof proceeds much like the proof of the main theorem, but some additional facts are needed. The element e in $(4'')$ will of course play the role of the constant function 1. As in §3, we obtain a unique positive linear functional μ on V satisfying $\mu(x) = \mu(|x|)$. If we set $\mu_1(x) = (1/\mu(e)) \cdot \mu(x)$, then μ_1 is again a positive linear functional “normalized” by the condition $\mu_1(e) = 1$. The semi-norm $p_1(x) = \mu_1(|x|)$ associated with μ_1 is evidently equivalent to the original semi-norm p.

As in §2, we regard B as a function lattice.

Lemma 4. Let V be a boundedly complete (resp. σ-complete) vector lattice, B a lattice ideal in V. Then B is boundedly complete (resp. σ-complete).

Proof. By Bourbaki [4, p. 21, Proposition 1], it suffices to show that any set H of positive elements, directed by \leq and bounded above has a least upper bound. By assumption, $\operatorname{sup} H$ exists in V and $0 \leq \operatorname{sup} H \leq b$, where $b \geq H$ is the element bounding H. Thus $\operatorname{sup} H \subseteq B$ by the lattice ideal property. For the σ-complete case take H countable. Q.E.D.

Thus B is a boundedly σ-complete algebra of bounded functions containing the order unit e and normed by $\|f\| = \inf \{\alpha : |f| \leq \alpha e\}$.

Lemma 5. B is complete in the uniform norm.

Proof. Let $\{f_n\}$ be a Cauchy sequence in B. Then given $\varepsilon > 0$ there exists an integer k such that $\|f_n - f_m\| < \alpha$, for $m, n \geq k$ and $\alpha = \varepsilon/2$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Now $|f_n - f_k| \leq \alpha \varepsilon$ so $-\alpha \varepsilon \leq f_n - f_k \leq \alpha \varepsilon$ and $f_k - \alpha \varepsilon \leq f_n \leq f_k + \alpha \varepsilon$. Hence f_n is bounded above and below in B. Setting $f = \limsup_{n \to \infty} f_n$ we have $f \in B$ by Lemmas 1 and 4 and condition (4'); moreover $f_k - \alpha \varepsilon \leq f \leq f_k + \alpha \varepsilon$ so $|f - f_k| \leq \alpha \varepsilon$ and $||f - f_k|| \leq \alpha = \varepsilon / 2 < \varepsilon$. Thus $||f - f_i|| \to 0$ as $i \to \infty$. Q.E.D.

By Theorem 2, B is linearly, latticially and isometrically isomorphic to $C(S)$ for some compact Hausdorff space S in such a way that ε corresponds to the constant function 1 on S. V is then abstractly identical with $L^1(S, \mu_1)$ and $V / \mathcal{P}^{-1}(0)$ can be identified with $L^1(S, \mu_1)$. This completes the proof of Theorem 3.

The example cited in §1 seems to suggest that the locally compact Hausdorff space E obtained via the representation is closely related to Segal's "perfection" of a localizable measure space (see [6]).

The author is grateful to Professors F. D. Quigley and F. B. Wright for their suggestions and encouragement.

REFERENCES

Tulane University