THE MONOTONE UNION OF OPEN n-CELLS
IS AN OPEN n-CELL

MORTON BROWN

In a research announcement [2] B. Mazur indicated that modulo
the Generalized Schoenflies Theorem, the following theorem could be
proved:

"If the open cone over a topological space X is locally Euclidean at
the origin, then it is topologically equivalent with Euclidean space."

Ronald Rosen [3] has described an ingenious proof of this theorem
based on the now known [1] Generalized Schoenflies Theorem. In the
present paper we prove a stronger theorem without employing the
Generalized Schoenflies Theorem.

DEFINITIONS AND NOTATION. If Q is an n-cell then \hat{Q}, \dot{Q} denote the
interior and boundary of Q, respectively. An n-annulus is a homeo-
morph of $S^{n-1}\times [01)$. If S is an $(n-1)$-sphere in an n-cell, then $I(S)$
denotes the interior (complementary domain) of S. If S_1, S_2 are
$(n-1)$-spheres in an n-cell and $S_1 \subseteq I(S_2)$, then $[S_1, S_2]$ (or equival-
ently $[S_2, S_1]$) denotes the set $C \{I(S_2)\} - I(S_1)$. An $(n-1)$-sphere S
embedded in a space X is collared if there is a homeomorphism h of
$S^{n-1}\times [01)$ into X such that $h(S^{n-1}\times 1/2) = S$. Finally B, will denote
the n-ball of radius r in E^n and centered at the origin.

Lemma 1. Let S be a collared $(n-1)$-sphere in the interior of an n-cell
Q such that $C \{I(S)\}$ is an n-cell. Let h be a homeomorphism of Q upon
itself such that $S \subseteq I(h(S))$ and $h|U = 1$ where U is a nonempty open
subset of $I(S)$. Then $h(S)$ is a collared $(n-1)$-sphere in \hat{Q}, $C \{I(h(S))\}$
is an n-cell and $[S, h(S)]$ is an n-annulus.

Proof. Let f be a homeomorphism of $S^{n-1}\times [01)$ into \hat{Q} such that
$f(S^{n-1}\times 0) = S, f(S^{n-1}\times [01]) \cap h(S) = 0$, and $f(S^{n-1}\times [01]) \cap I(S) = 0$.
Evidently $I(S) \cup f(S^{n-1}\times [01])$ is an n-cell. Hence there is a homeo-
morphism g of Q upon itself such that:

1. $g(S) \subseteq U$,
2. $g|f(S^{n-1}\times 0) \cap 1/2) = S$,
3. $g| h(S) = 1$.

Then

Presented to the Society, September 2, 1960; received by the editors September
30, 1960.

1 The results of [1] make this last part of the hypothesis unnecessary.
THE MONOTONE UNION OF OPEN \(n \)-CELLS

\[
g^{-1} h g_f(S^{n-1} \times [0, 1/2]) = g^{-1} h g_f(S^{n-1} \times 0, f(S^{n-1} \times 1/2))
\]
\[
= g^{-1} h [g(S), S]
\]
\[
= g^{-1} [g(S), h(S)]
\]
\[
= [S, h(S)].
\]

Hence \([S, h(S)]\) is an \(n \)-annulus. Obviously \(h(S) \) is collared and \(\text{Cl} [I(h(S))] \) is an \(n \)-cell.

Lemma 2. Let \(S \) be a collared \((n - 1)\)-sphere in the interior of an \(n \)-cell \(Q \) such that \(\text{Cl} [I(S)] \) is an \(n \)-cell.1 Suppose \(M \) is a compact subset of \(Q \). Then there is a collared \((n - 1)\)-sphere \(S' \) in \(Q \) such that \(I(S') \supset M \cup S \), \(\text{Cl} [I(S')] \) is an \(n \)-cell, and \([S, S']\) is an \(n \)-annulus.

Proof. We may suppose without loss of generality that \(Q \) is the unit ball \(B_1 \) in \(E^n \) and that \(I(S) \) contains the origin. Let \(\epsilon > 0 \) be small enough so that \(B_\epsilon \subset I(S) \) and \(M \subset I(S) \). Let \(h \) be a homeomorphism of \(B_1 \) upon itself such that \(h|B_{1/2} = 1 \) and \(h(B_\epsilon) \supset B_{1-\epsilon} \). Then \(S' = h(S) \) contains \(M \cup S \) in its interior. Lemma 1 insures that \(h(S) \) is collared and that \([S, h(S)]\) is an \(n \)-annulus.

Theorem. Let \(X \) be a topological space which is the union of a sequence \(V_1 \subset V_2 \subset \cdots \subset V_i \subset \cdots \) of open subsets where each \(V_i \) is homeomorphic to \(E^n \). Then \(X \) is homeomorphic to \(E^n \).

Proof. Let \(h_i \) map \(E^n \) homeomorphically onto \(V_i \). Then \(h_i(B_1) \) is an \(n \)-cell in \(V_i \). There is an integer \(n_2 \) such that

\[
h_2(B_{n_2}) \supset h_1(B_2) \cup h_2(B_2).
\]

Inductively, there is a sequence of integers \(n_3, n_4, \ldots \), such that for all \(i \)

\[
h_i(B_{n_i}) \supset h_1(B_i) \cup \cdots \cup h_i(B_i) \cup h_{i-1}(B_{n-1}).
\]

Since \(X \) is locally Euclidean, \(h_i(B_{n_i}) \) is an \(n \)-cell in \(X \) containing \(h_{i-1}(B_{n_{i-1}}) \) in its interior \(h_i(B_{n_i}) \). Finally \(\bigcup_{i=1}^\infty B_{n_i} = X \). For if \(x \in X \) there is an integer \(j \) such that \(x \in V_j \). Hence there is an integer \(k > j \) such that \(x \in h_j(B_{n_k}) \). But then \(x \in h_k(B_{n_k}) \). Let \(Q_i = h_i(B_{n_k}) \). Then \(X = \bigcup_{i=1}^\infty Q_i \) where \(Q_i \) is an \(n \)-cell, \(Q_i \subset \hat{Q}_{i+1} \), and \(\hat{Q}_{i+1} \) is open in \(X \).

Let \(S_1 \) be a collared \((n - 1)\)-sphere in \(\hat{Q}_1 \) such that \(\text{Cl} [I(S_1)] \) is an \(n \)-cell. Applying Lemma 2 to the \(n \)-cell \(Q_2 \), we obtain a collared \((n - 1)\)-sphere \(S_2 \) in \(\hat{Q}_2 \) such that \(I(S_2) \supset Q_2 \cup S_1 \), \([S_1, S_2]\) is an \(n \)-annulus, and \(\text{Cl} [I(S_2)] \) is an \(n \)-cell. The same lemma applied to \(Q_3 \) and \(S_2 \) yields us a collared sphere \(S_3 \) in \(\hat{Q}_3 \) such that \(I(S_3) \supset S_3 \cup Q_2 \), \([S_2, S_3]\) is an \(n \)-annulus, and \(\text{Cl} [I(S_3)] \) is an \(n \)-cell. Continuing this argument, we
get a sequence S_1, S_2, \ldots, of $(n-1)$-spheres such that $[S_i, S_{i+1}]$ is an n-annulus and $X = I(S_1) \cup [S_1, S_2] \cup [S_3, S_4] \cup \cdots$. Evidently X is homeomorphic to E^n.

References

University of Michigan

THREADS WITHOUT IDEMPOTENTS

C. R. STOREY

If a thread S has no idempotents and if $S^2 = S$, then S is isomorphic with the real interval $(0, 1)$ under ordinary multiplication [2, Corollary 5.6]. Although the result is not nearly as pleasing as the special case just quoted, we shall give here a description of any thread without idempotents. Recall from [1] that a thread is a connected topological semigroup in which the topology is that induced by a total order.

First some examples. Let X be a totally ordered set which is a connected space in the interval topology, let T be a subset of X containing, with t, all elements less than t, and let ϕ be any continuous function from X into $(0, 1)$ whose restriction, ϕ_0, to T is a strictly order-preserving map of T onto $(0, a^2)$ where $a = \text{l.u.b. } \phi(X)$. (We admit that a might be 1.) For such a ϕ to exist it is evidently necessary that X not have a least element, that T not have a greatest element and, provided $T \neq X$ so that the least upper bound, q, of T exists, that $\phi(q) = a^2$.

If $\phi(X)$ is the open interval $(0, a)$, define a multiplication in X by: $x \circ y = \phi^{-1}(\phi(x)\phi(y))$. With this definition it is quite easy to see that X is a thread without idempotents and that ϕ is a homomorphism.

In the event that $\phi(X)$ is the half closed interval $(0, a]$ (which implies of course that $a < 1$), put $A = \phi^{-1}(a)$ and $B = \phi^{-1}(a^2)$, observe that q must be the least element of B, and let ψ be any continuous

Received by the editors July 28, 1960.

1 This paper was prepared while the author held a National Science Foundation Postdoctoral Fellowship.