
Tulane University and
St. Mary’s Dominican College

IMMERSIONS OF ALMOST PARALLELIZABLE MANIFOLDS

MORRIS W. HIRSCH

The purpose of this note is to prove the following theorem:
An almost parallelizable n-manifold M can be immersed in Euclidean q-space \(\mathbb{R}^q \) if \(2q > 3n \).

By immersion \(f: M \to \mathbb{R}^q \) we mean a continuously differentiable map whose Jacobian matrix has rank \(n = \dim M \) at each point. We denote the differential of an immersion \(f \) by \(df \).

A regular homotopy \(f_t: M \to \mathbb{R}^q \) is a homotopy such that each \(f_t \) is an immersion and \(df_t \) is a homotopy of the tangent bundle of \(M \) into \(\mathbb{R}^q \). In this case \(f_0 \) and \(f_1 \) have equivalent normal bundles.

We say \(M \) is almost parallelizable if the tangent bundle of \(M - x \) is trivial, for some \(x \in M \).

To prove the theorem, we first observe that if \(M \) is not compact, or is bounded, then \(M \) is parallelizable, and by [1, 6.3], \(M \) can be immersed in \(\mathbb{R}^{n+1} \subseteq \mathbb{R}^q \). Hence we assume \(M \) is compact and unbounded. Let \(B \) be an \(n \)-ball diffeomorphically embedded in \(M \), with bounding \((n-1) \) sphere \(S \). Put \(M_0 = M - \text{int} B \). By the remark above, there is an immersion \(f: M_0 \to \mathbb{R}^{n+1} \). We consider \(f \) as an immersion in \(\mathbb{R}^q \), and we deform \(f \) through a regular homotopy near \(S \), keeping \(f|_S \) fixed, so that if \(X \) is a unit tangent vector to \(M \) at point \(x \in S \) pointing into \(M_0 \), then \(df(X) \) is the unit vector \(e = (0, \ldots, 0, 1) \) normal to \(\mathbb{R}^{q-1} \) in \(\mathbb{R}^q \). We still have \(f(S) \subseteq \mathbb{R}^{q-1} \).

Since the immersion \(f \) is regularly homotopic to an immersion \(M \to \mathbb{R}^{n+1} \), the normal bundle of \(f \) is trivial. This enables us to apply a lemma [2, 3.2] of M. Kervaire, which implies that the Smale in-

Received by the editors October 10, 1960.

1 Supported by National Science Foundation Contract NSF G-11594.
variant of $f|S$ vanishes. By [3, E], therefore, there exists an immersion $g: B \to \mathbb{R}^{r-1}$ such that $g|S = f|S$. We consider g as an immersion in \mathbb{R}^q, and we deform g through a regular homotopy, so that if X is the vector above, $dg(-X) = -e$. We now define $h: M \to \mathbb{R}^q$ by $h(x) = f(x)$ or $h(x)$, according to whether $x \in M_0$ or $x \in B$. It is clear that h is an immersion, and the theorem is proved.

References

University of California, Berkeley