In his discussion of the problem of imbedding a finite lattice into a finite partition lattice, Birkhoff [1] speculates that there are no non-trivial identities satisfied in every finite partition lattice. We give a simple proof of this conjecture based upon Whitman's Theorem [4]. Since a partition lattice P is a complete, meet-continuous lattice in which every element is a join of points [3], P is isomorphic to the lattice of ideals of its sublattice P' of finite-dimensional elements. We prove Birkhoff's conjecture by focusing attention on P' rather than on P directly.

We denote the join and meet operations by $+$ and \cdot. A lattice polynomial form will be denoted by $f(x_1, \ldots, x_1, \ldots, x_n, \ldots, x_n)$, where we repeat a variable m times if it appears m times in the form.

Lemma. If an identity is valid in a lattice L, then it is valid in the lattice L' of all ideals of L.

Proof. Let the identity be

$$f(x_1, \ldots, x_1, \ldots, x_n, \ldots, x_n) = g(x_1, \ldots, x_1, \ldots, x_n, \ldots, x_n).$$

If $t \in f(X_1, \ldots, X_1, \ldots, X_n, \ldots, X_n)$, then

$$t \leq f(x_{11}, \ldots, x_{1n}, \ldots, x_{n1}, \ldots, x_{nn}).$$

where $x_{pq} \in X_p$, the X_p being ideals. Obviously

$$t \leq f(x'_1, \ldots, x'_1, \ldots, x'_n, \ldots, x'_n) = g(x'_1, \ldots, x'_1, \ldots, x'_n, \ldots, x'_n)$$

where $x'_i = \sum_p x_{ip}$.

Thus $t \in g(X_1, \ldots, X_1, \ldots, X_n, \ldots, X_n)$ since the X_p are ideals. It therefore follows that $f(X_1, \ldots, X_1, \ldots, X_n, \ldots, X_n) \subseteq g(X_1, \ldots, X_1, \ldots, X_n, \ldots, X_n)$, and by symmetry the identity $f = g$ is valid in L'.

Remark. This lemma is an exercise (unanswered) in [2, p. 80].

Theorem. Any identity valid in every finite partition lattice is trivial, i.e. is valid in every lattice.

Proof. Let us suppose that the identity $f = g$ is valid in every finite

Received by the editors November 7, 1960.
partition lattice. Let \(P \) be any partition lattice, and let \(P' \) be its sublattice of finite-dimensional elements. The join of any \(n \) elements in \(P' \) lies in an interval sublattice \([0, a]\) which is isomorphic to a finite partition lattice. (Take the union of all the sets of the \(n \) partitions which are nonsingletons.) Thus if the identity \(f = g \) is valid in every finite partition lattice, it is valid in \(P' \). In view of the lemma and the fact that \(P \) is isomorphic to the lattice of ideals in \(P' \), the identity \(f = g \) is valid in \(P \). By Whitman’s Theorem every lattice is a sublattice of some partition lattice, and therefore the identity \(f = g \) is valid in every lattice.

Corollary. There are no nontrivial identities valid in any infinite partition lattice.

Corollary. For every nontrivial identity \(f = g \), there exists a finite lattice in which it is invalid.

The last corollary suggests the following question: If an identity is valid in every finite sublattice of a lattice \(L \), is it valid in \(L \)? This is certainly the case for the modular and distributive identities.

Bibliography

