Baire spaces cannot be removed. If Q is the space of rationals in E_1 with the relative topology, there is a separately continuous $f: Q \times Q \rightarrow E_1$ which is zero on a dense subset of $Q \times Q$ but not identically zero.

Reference

Purdue University

COMPLETE SEQUENCES OF FUNCTIONS\(^1\)

CASPER GOFFMAN

Although the result of this note is implicitly contained in the work of A. A. Talalyan [2] and could also have been a corollary to the theorem in [1], it seems to be of sufficient interest to merit explicit treatment.

It is known (see [1]) that if \(\{f_1, f_2, \ldots, f_n, \ldots\} \) is a sequence of measurable functions which is complete in the space M of measurable functions (i.e., every measurable f is the limit in measure of a sequence of finite linear combinations of \(\{f_1, f_2, \ldots, f_n, \ldots\} \)) then \(\{f_2, f_3, \ldots, f_n, \ldots\} \) is also complete in M.

Let X be a separable Banach space of measurable functions on $[a, b]$ such that for every measurable $G \subset [a, b]$, with $m(G) > 0$, the set X_G of restrictions of the functions in X to G is a Banach space and

(a) If \(\{g_n\} \) converges to g in X then \(\{g_n\} \) converges to g in X_G,

(b) The set of bounded measurable functions is a dense subset of X_G;

(c) For every G, uniform convergence on G implies convergence in X_G and convergence in X_G implies convergence in measure on G.

Theorem. If \(\{f_1, f_2, \ldots, f_n, \ldots\} \) is complete in X and $\varepsilon > 0$, there is a measurable $G \subset [a, b]$, with $m(G) > (b-a) - \varepsilon$, such that \(\{f_2, f_3, \ldots, f_n, \ldots\} \) is complete in X_G.

Proof. Let \(\{g_1, g_2, \ldots, g_n, \ldots\} \) be dense in X. Since \(\{f_1, f_2, \ldots, f_n, \ldots\} \) is complete in X, it follows from (b), (c) and

1 Supported by National Science Foundation Grant NSF-G18920.
the fact that the bounded functions are dense in \(M \), that
\[\{f_1, f_2, \ldots, f_m, \ldots \} \]
is complete in \(M \). It follows from [1] that for every \(n \), there is a sequence \(\{\phi_1, \phi_2, \ldots, \phi_m, \ldots \} \) of finite linear combinations of \(\{f_2, f_3, \ldots, f_n, \ldots \} \) which converges in measure to \(g_n \), and so has a subsequence \(\{\psi_1, \psi_2, \ldots, \psi_m, \ldots \} \) which converges uniformly to \(g_n \) on a measurable set \(G_n \), with \(m(G_n) > (b-a) - \epsilon/2^n \).

Let \(G = \bigcap_{n=1}^{\infty} G_n \). Since uniform convergence on \(G \) implies convergence in \(X_\sigma \) by (a), and since \(\{g_1, g_2, \ldots, g_n, \ldots \} \) is dense in \(X_\sigma \) by (c), it follows that \(\{f_2, f_3, \ldots, f_n, \ldots \} \) is complete in \(X_\sigma \).

If \(X = L_2[a, b] \), then \(X_\sigma = L_2(G) \), so that we have:

Corollary. If \(\{f_1, f_2, \ldots, f_n, \ldots \} \) is complete for \(L_2[a, b] \) and \(\epsilon > 0 \) there is a measurable \(G \subset [a, b] \), \(m(G) > (b-a) - \epsilon \) such that \(\{f_2, f_3, \ldots, f_n, \ldots \} \) is complete for \(L_2(G) \).

References
