Sums arising in the thoery of Markov chains

Author:
Steven Orey

Journal:
Proc. Amer. Math. Soc. **12** (1961), 847-856

MSC:
Primary 60.65

MathSciNet review:
0139206

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**Kai Lai Chung,*Contributions to the theory of Markov chains*, J. Research Nat. Bur. Standards**50**(1953), 203–208. MR**0055608****[2]**C. Derman,*A solution to a set of fundamental equations in Markov chains*, Proc. Amer. Math. Soc.**5**(1954), 332–334. MR**0060757**, 10.1090/S0002-9939-1954-0060757-0**[3]**P. Erdös, W. Feller, and H. Pollard,*A property of power series with positive coefficients*, Bull. Amer. Math. Soc.**55**(1949), 201–204. MR**0027867**, 10.1090/S0002-9904-1949-09203-0**[4]**Wassily Hoeffding,*On sequences of sums of independent random vectors*, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 213–226. MR**0138116****[5]**Frank Spitzer,*Some properties of recurrent random walk*, Illinois J. Math.**5**(1961), 234–245. MR**0123369****[6]**-,*Recurrent random walk and logarithmic potential*, 1960 Berkeley Symposium for Probability and Statistics, to appear.**[7]**John G. Kemeny and J. Laurie Snell,*Potentials for denumerable Markov chains*, J. Math. Anal. Appl.**3**(1961), 196–260. MR**0140141**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60.65

Retrieve articles in all journals with MSC: 60.65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1961-0139206-3

Article copyright:
© Copyright 1961
American Mathematical Society