Sums arising in the thoery of Markov chains

Author:
Steven Orey

Journal:
Proc. Amer. Math. Soc. **12** (1961), 847-856

MSC:
Primary 60.65

DOI:
https://doi.org/10.1090/S0002-9939-1961-0139206-3

MathSciNet review:
0139206

Full-text PDF

References | Similar Articles | Additional Information

**[1]**K. L. Chung,*Contributions to the theory of Markov chains*, J. Res. Nat. Bur. Standards vol. 50 (1953) pp. 203-208. MR**0055608 (14:1099g)****[2]**C. Derman,*A solution to a set of fundamental equations in Markov chains*, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 332-334. MR**0060757 (15:722h)****[3]**P. Erdös, W. Feller, and H. Pollard,*A property of power series with positive coefficients*, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 201-204. MR**0027867 (10:367d)****[4]**W. Hoeffding,*On sequences of sums of independent random vectors*, 1960 Berkeley Symposium for Probability and Statistics, to appear. MR**0138116 (25:1563)****[5]**F. Spitzer,*Some properties of recurrent random walk*, Illinois J. Math, to appear. MR**0123369 (23:A696)****[6]**-,*Recurrent random walk and logarithmic potential*, 1960 Berkeley Symposium for Probability and Statistics, to appear.**[7]**J. G. Kemeny and J. L. Snell,*Potentials for denumerable Markov chains*, (Abstract), Dartmouth Mathematics Project, Progress Report no. 6, 1960. MR**0140141 (25:3563)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60.65

Retrieve articles in all journals with MSC: 60.65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1961-0139206-3

Article copyright:
© Copyright 1961
American Mathematical Society