THE POWER OF TOPOLOGICAL TYPES OF SOME CLASSES OF 0-DIMENSIONAL SETS

M. REICHbach

By a result of Mazurkiewicz and Sierpinski, there exist \aleph_1 topological types of compact and countable sets. Since a countable set is 0-dimensional, there arises a natural question: what is the power of topological types of other classes of 0-dimensional sets? In this paper we consider separable metric spaces only. Every 0-dimensional space being topologically contained in the Cantor set C, we confine ourselves to subsets of this set.

We prove the following three theorems:

Theorem 1. There exist two topological types of open subsets of the Cantor set C.

Theorem 2. There exist 2^{\aleph_0} topological types of closed subsets of the Cantor set C.

Theorem 3. There exist 2^{\aleph_0} topological types of 0-dimensional G_δ sets which are dense in themselves.

Theorem 1 is known in part, but it seems to the author that an exact proof of it has not been published so far.

Theorems 2 and 3 are new; the latter gives an answer to a problem by Knaster and Urbanik.

The paper contains also some lemmas on homeomorphisms and a notion of a rank $r_p(B)$ of a point p relative to the set B.

1. In this section a lemma on homeomorphisms and the above Theorem 1 are proved.

Lemma 1. Let $\{F_n\}$ and $\{G_n\}$ be two sequences of sets satisfying

1. $F_n \cap F_m = 0 = G_n \cap G_m$ for $n \neq m$,
2. for every n the set F_n is open in the union $F = \bigcup_{n=1}^{\infty} F_n$ and G_n is open in $G = \bigcup_{n=1}^{\infty} G_n$, and
3. for every n there exists a homeomorphism h_n such that $h_n(F_n) = G_n$, $n = 1, 2, \ldots$.

Then the mapping h defined by $h(x) = h_n(x)$ for $x \in F_n$ is a homeomorphism between F and G.

Received by the editors July 21, 1960 and, in revised form, December 6, 1960.

1 See [6, p. 22].
2 See [4, p. 173].
3 Some general hints may be found in [3, p. 198].
4 See [3, p. 198].
PROOF. By (1) and (3), \(h \) is a one-to-one mapping of \(F \) onto \(G \). Since the proofs of the continuity of \(h \) and \(h^{-1} \) are symmetric, we shall show that \(h \) is continuous.

Indeed, let \(\{x_n\} \) be a sequence of points belonging to \(F \), tending to a point \(x \) of \(F \); \(x_n\to x \). Since \(x\in F \), there exists a number \(n_0 \) such that \(x\in F_{n_0} \). Now by (2) there exists a number \(N \) such that for \(n>N \) there is \(x_n\in F_{n_0} \) (since otherwise the set \(F_{n_0} \) would not be open in \(F \)). But \(h_{n_0} \) is continuous—as a homeomorphism—and therefore for \(n>N \):

\[
 h(x_n) = h_{n_0}(x_n) = h_{n_0}(x) = h(x).
\]

Remark 1. Let \(F_n \) be the plane set defined by \(F_n = \{(x, y); x = 1/n, 0 \leq y \leq 1\} \) and put \(G_n = \{(x, y); x = 0; 0 \leq y \leq 1\} \) and \(G_{n+1} = F_n \), \(n = 1, 2, \ldots \). For these sets the assumption (2) of the lemma is not satisfied for the set \(G_1 \) only and evidently \(F = \bigcup_{n=1}^\infty F_n \) is not homeomorphic with \(G = \bigcup_{n=1}^\infty G_n \), since \(G \) is a compact set and \(F \) is not. This shows also that assumption (2) of the lemma cannot be replaced by the assumption that \(F_n \) and \(G_n \) are compact and \(\rho(F_n, F_m) \) and \(\rho(G_n, G_m) \) are positive for all \(n \neq m \).

To prove Theorem 1 it suffices to show that:

Every open subset of the Cantor set \(C \) is either homeomorphic to \(C \) or to \(C \) without the zero point: \(C \setminus \{0\} \).

PROOF. Let \(G \) be an open subset of the Cantor set \(C \). Then \(G \) can be written in the form:

\[
 G = G_1 \cup G_2 \cup \cdots, \quad G_n \cap G_m = 0 \quad \text{for} \quad n \neq m,
\]

where the sets \(G_n \) are closed and open in \(C \).

Now two cases are possible:

(a) \(G \) is a finite union of the sets \(G_n \), i.e. there exists an integer \(N \) such that \(G_n = 0 \) for \(n > N \), and

(b) all the sets \(G_n \) in (4) are nonempty.

Since

(5) a closed and open subset of the Cantor set \(C \) is a perfect set, we see that in case (a) the set \(G \) is a perfect 0-dimensional set and therefore homeomorphic to the Cantor set \(C \).

In case (b) we can write the set \(C \setminus \{0\} \) analogically as in (4) in the form:

\[
 C \setminus \{0\} = F_1 \cup F_2 \cup \cdots, \quad F_n \cap F_m = 0 \quad \text{for} \quad n \neq m,
\]

where the sets \(F_n \) are nonempty and closed and open in \(C \).

By (5) there exists for every \(n \) a homeomorphism \(h_n \) between \(F_n \) and \(G_n \) and therefore by (4) and (6) the assumptions of the lemma hold.

\footnote{By \(\rho(F_n, F_m) \) we understand the distance between the sets \(F_n \) and \(F_m \), i.e. \(\rho(F_n, F_m) = \inf_{x \in F_n, y \in F_m} \rho(x, y) \), where \(\rho(x, y) \) denotes the distance between the points \(x \) and \(y \).}

\footnote{See [4, p. 166].}
Thus by the lemma the set G is, in case (b), homeomorphic to $C \setminus \{0\}$.

Remark 2. Theorem 1 may also be proved in another way by using the one-point compactification theorem, but such an exact proof is not simpler than ours.

2. We show in this section that there exist $2^{|S|}$ topological types of closed subsets of the Cantor set C. Since the power of all closed subsets of C is $2^{|S|}$ and every 0-dimensional space has a topological image in the Cantor set C, it suffices to construct a family S of power $2^{|S|}$ of compact, 0-dimensional sets, such that no two sets belonging to this family are homeomorphic. To do this we introduce the notion of a rank $r_\alpha(B)$ of a point p relative to the set B. First we recall the notion of the coherence and adherence of a set E in the sense of Hausdorff.

Evidently, the αth adherence is an isolated set. The αth adherence of the set E will be denoted by $E(\alpha)$. It is clear that if E is a compact and countable set and $E(\beta)$ is the last derivative of E, then $E(\beta) = E(\beta)$ and $E = \bigcup_{\beta \leq \alpha} E(\beta)$.

Example 1. Take on the x-axis the sets of points defined by: $E_1 = \{x; x = 1/n, n = 1, 2, \ldots \}$, $E_2 = \{x; x = 1/n + 1/m, m, n = 1, 2, \ldots \}$, $E_3 = (E_2 \setminus E_1) \cup \{0\}$. Then, the first coherence of E_1 is empty and the first derivative of E_1 consists of the point $x = 0$. The first coherence of the set E_2 consists of the point 0. The second coherence of E_2 is empty. The first derivative of E_2 is the set $E_1 \cup \{0\}$ and the second derivative of E_2 consists of the point 0.

We define now the rank $r_\alpha(B)$ of a point $p \in \overline{B}$, where B is a countable set such that \overline{B} is 0-dimensional.
DEFINITION. Let \(p \in \mathbb{B} \) where \(B \) is a countable set and \(\mathbb{B} \) is 0-dimensional. If \(p \in B_0 \) we define \(r_p(B) = 0 \). If there exists an \(\alpha \) such that \(p = \lim_{n \to \infty} p_n \) where \(p_n \in B_\alpha \) and \(p \) is not a limit point\(^{12}\) of \(B_{\alpha+1} \), we define \(r_p(B) = \alpha + 1 \).

If such an \(\alpha \) does not exist, then there exist an ordinal \(\alpha' \), a sequence \(\{ \alpha'_n \} \) of ordinals such that \(\alpha' = \alpha' \) and a sequence of points \(p_n \in B_\alpha \) such that \(p = \lim_{n \to \infty} p_n \) and \(p \) is not a limit point of \(B_\alpha \). In this case we define \(r_p(B) = \alpha' \).

EXAMPLE 2. If \(E_3 \) is the set defined in Example 1, the rank of the point 0 relative to \(E_3 \) is equal to 1.

Let now \(E_1 \) and \(E_2 \) be compact and countable sets, such that the \(\omega \)th derivative \(E_1^{(\omega)} \) of \(E_1 \) consists of the point \(p : E_1^{(\omega)} = (p) \) and the second derivative \(E_2^{(2)} \) of \(E_2 \) consists of the point \(q : E_2^{(2)} = (q) \). Put \(E_0 = E_1 \times (q) \cup (p) \times E_2 \) and \(B = [(p) \times E_2] \setminus (p, q) \). Then \(r_{(p, q)}(B) = 2 \) and \(r_{(p, q)}(E_2) = \omega \).

To define the family \(\mathcal{F} \) a few additional simple remarks are needed.

Since the order \(\alpha \) of a coherence is an invariant of homeomorphisms, it is easily seen that

(7) the rank \(r_p(B) \) is an invariant of homeomorphisms defined on \(\mathbb{B} \).

Take now the Cantor set \(C \) and let \(E \) be a compact and countable subset of \(C \) such that the \(\omega \)th derivative \(E^{(\omega)} \) of \(E \) consists of the point \(q : E^{(\omega)} = (q) \). Take the \(n \)th adherence \(E_n \) of \(E \), \(n = 1, 2, \cdots \) and choose from every \(E_n \) a point \(p_n \).

Since the order of an adherence is invariant under homeomorphisms we have that

(8) if \(h \) is any homeomorphism of \(E \) into itself, then \(h(p_n) = p_m \) for \(n \neq m \).

Let now \(D_n \) be the sequence of intervals in the plane defined by \(D_n = \{ (x, y) ; x = p_n, 0 \leq y \leq 1 \} \) \(n = 1, 2, \cdots \) and let \(\{ \alpha_n \} \) be a sequence of ordinals: \(1 < \alpha_n < \Omega \). Choose in every \(D_n \) a countable and compact subset \(F_n \) such that \(\alpha_n \) be the order of the last derivative \(F_n^{(\alpha_n)} \) of \(F_n \) and that \(F_n^{(\alpha)} = (p_n) \). Then the set \(A = C \cup \bigcup_{n=1}^{\infty} F_n \) is compact (since the diameters of \(D_n \) are equal to \(1/n \) and \(F_n \subset D_n \) and 0-dimensional. By the definition of \(F_n \) we have also

\[
\alpha_n > 1, \quad n = 1, 2, \cdots
\]

Now take in the plane an arbitrary bounded and isolated set \(I \)

\(^{12}\) A point \(x \) such that there exists a sequence \(\{ x_n \} \) of points \(x_n \) belonging to \(E \), \(x_n \neq x_m \) for \(n \neq m \) and such that \(x_n \to x \) is called a limit point of \(E \).

\(^{13}\) \(\times \) denotes the Cartesian product and \((p, q)\) is the point in the Cartesian product.
disjoint with C such that $I^{(1)} = E$. Then the set $A_1 = C \cup \bigcup_{n=1}^{\infty} F_n \cup I$ is 0-dimensional and compact. Denoting the decomposition of A_1 according to the theorem of Cantor-Bendixson by $A_1 = P_1 \cup B_1$ with P_1 as perfect set, we obtain

$$P_1 = C \quad \text{and} \quad B_1 = \left(\bigcup_{n=1}^{\infty} F_n \cup I \right) \setminus E$$

and by the definition of I,

$$P_1 \cap B_1 = E.$$

Since I is isolated there is also, by (9),

(10) \quad \rho_{p_n}(B_1) = \alpha_n > 1 \quad \text{and for every } p \in E \text{ and } p \neq p_m, \quad \rho_p(B_1) = 1.$$

If we take now any other sequence \(\{\beta_n\} \) of ordinals: \(1 < \beta_n < \Omega \) and the same set E and points p_n, we can construct, analogically as before, a 0-dimensional and compact set A_2 with the following properties:

If we denote the decomposition of A_2 according to the theorem of Cantor-Bendixson by $A_2 = P_2 \cup B_2$ with P_2 as perfect set, then $P_2 = C$ and

$$P_2 \cap B_2 = E.$$

Also

(10') \quad \rho_{p_n}(B_2) = \beta_n > 1 \quad \text{and for every } p \in E \text{ and } p \neq p_m, \quad \rho_p(B_2) = 1.$$

Now suppose that there exists a homeomorphism h between A_1 and A_2: $h(A_1) = A_2$. Then we would have $h(P_1 \cap B_1) = P_2 \cap B_2$, i.e., $h(E) = E$. Hence by (8) there would be $h(p_n) \neq p_m$ for $n \neq m$. But, by (7), (10) and (10') there must be $h(p_n) = p_n$ and therefore by (7), $\alpha_n = \beta_n$ for every n. This shows that if the sequences \(\{\alpha_n\} \) and \(\{\beta_n\} \) are different, the sets A_1 and A_2 cannot be homeomorphic. But the power of all sequences \(\{\alpha_n\} \), \(1 < \alpha_n < \Omega \) is $\aleph_1 = 2^\aleph_0$. Hence Theorem 2 holds.

Remark 3. In [7, p. 119], we introduced a function $\sigma_A(B)$ assigning to every 0-dimensional compact set A an ordinal $< \Omega$. Using this function, it can be easily shown that the power of all topological types of compact uncountable subsets of the Cantor set is \aleph_1. (This can be also obtained from the result of Mazurkiewicz and Sierpinski, mentioned at the beginning of this paper.) Thus by the continuum hypothesis it is equal to 2^{\aleph_0}, but we proved this fact without recourse to this hypothesis.

Note also that the fact that there exist 2^{\aleph_0} topological types of closed sets (not necessarily 0-dimensional) was stated in [6, p. 27].

3. In this section a proof of Theorem 3 is given. Two lemmas are also proved.
Lemma 2. Let C_1 and C_2 be two compact 0-dimensional sets and let $S_i \subseteq C_i$, $i = 1, 2$ such that $\text{Cl}(C_i \setminus S_i) = C_i$. Suppose that there exists a homeomorphism $h(C_i \setminus S_i) = C_2 \setminus S_2$ and let $p \in C_i \setminus S_i$ be a limit point of S_i. Then the point $h(p) = q$ is a limit point of S_2.

Proof. Suppose that q is not a limit point of S_2. Since C_2 is 0-dimensional, there exists a closed and open (in C_2) neighbourhood $U \subseteq C_2$ of q such that $U \cap S_2 = \emptyset$. U being closed in C_2 it is compact; and since h^{-1} is continuous $h^{-1}(U)$ is also a compact subset of $C_i \setminus S_i$. But $h^{-1}(U) \subseteq C_i \setminus S_i$ is also a neighbourhood of p, and since $\text{Cl}(C_i \setminus S_i) = C_i$ and p is a limit point of S_i, there exists a point $p' \in S_i$ such that $p' \in h^{-1}(U)$, which is impossible.

As a trivial consequence of Lemma 2 we obtain the following:

Lemma 3. Let C_1 and C_2 be two perfect, 0-dimensional sets (containing more than one point) and let $S_i \subseteq C_i$, $i = 1, 2$ be two subsets of C_i such that S_i is denumerable. Suppose that there exists a homeomorphism $h(C_i \setminus S_i) = C_2 \setminus S_2$ and let $p \in C_i \setminus S_i$ be a limit point of S_i, then the point $h(p) = q$ is a limit point of S_2.

Indeed, since S_i is denumerable we have $\text{Cl}(C_i \setminus S_i) = C_i$. The other assumptions of Lemma 2 being trivially satisfied it remains to apply this lemma.

Proof of Theorem 3. Since every subset of C which is a G_δ set is defined by a sequence of open sets and the power of all open subsets of C is 2^{\aleph_0}, the power of all G_δ sets does not exceed $(2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}$. Therefore it remains to construct a family of power 2^{\aleph_0} of G_δ sets which are dense in themselves and such that no two sets of this family are homeomorphic. We proceed to do this.

Take a perfect subset P of the set C which is nowhere dense in C. By Theorem 2 there exists a family \mathcal{F} of power 2^{\aleph_0} of closed subsets of P such that every two sets of \mathcal{F} are not homeomorphic. Since P is closed and nowhere dense in C the sets of \mathcal{F} are nowhere dense closed subsets of C. Thus for every set $F \subseteq \mathcal{F}$ there exists a sequence $S \subseteq C$ of points such that $S \subseteq C\setminus S$ and $S = F \cup S$. Now take two sets F_1 and F_2 of \mathcal{F} and two sequences S_1 and S_2 of points such that $S_i \subseteq C$, $F_i \subseteq C \setminus S_i$ and $S_i = F_i \cup S_i$.

Consider the sets $C \setminus S_i$, $i = 1, 2$. We shall show that these sets are not homeomorphic. Indeed, suppose that there exists a homeomorphism $h(C \setminus S_i) = C \setminus S_2$. Since S_i is denumerable and C is perfect the assumptions of Lemma 3 hold for $C_1 = C_2 = C$. Thus, by $F_i \subseteq C \setminus S_i$ and $S_i = F_i \cup S_i$ every point p of F_1 has an image $h(p)$ in F_2 and conversely.

14 Evidently P is homeomorphic to C.
for every $q \in F_2$ there is $h^{-1}(q) \in F_1$. Hence by $h(C \setminus S_1) = C \setminus S_2$ there is $h(F_1) = F_2$ which is impossible by $F_i \in \mathfrak{F}$, $i = 1, 2$.

Thus we can correspond to every set $F \in \mathfrak{F}$ a set $C \setminus S$, where S is denumerable, in such a way that the sets $C \setminus S_1$ and $C \setminus S_2$, corresponding to different sets F_1 and F_2 of \mathfrak{F}, are not homeomorphic. Since the power of \mathfrak{F} is 2^{\aleph_0}, the power of the family of corresponding sets of the form $C \setminus S$ is also 2^{\aleph_0}. Since S is denumerable the sets $C \setminus S$ are G_δ sets and since C is perfect they are also dense in themselves. Hence Theorem 3 holds.

References

Technion—Israel Institute of Technology, Haifa.