REMARKS ON A PAPER OF HOBBY AND WRIGHT

PAUL HILL

C. Hobby and C. R. B. Wright [2] have just published the following Theorem A. However, their proof seems to contain an error.²

The notation of [2] is used except that G_n is not reserved for the nth term of the lower central series of G; $\phi(G)$ denotes the Frattini subgroup of G; (G, H) means the group generated by the commutators $g^{-1}h^{-1}gh$ where $g \in G$, $h \in H$; $(A_1, A_2, \cdots, A_{n+1})$ is defined inductively as $((A_1, A_2, \cdots, A_n), A_{n+1})$; $H \leq G$ means that H is properly included in G.

Theorem A. If G is a finite p-group and H a subgroup of G such that $H \trianglelefteq G_n$, then $(H \phi(G_n)) \trianglelefteq G_n$, where X_n denotes the nth term of the lower central series of X.

N. Itô [3] had already proved this theorem for the case $n = 2$. In this note, Itô's theorem is generalized in a somewhat stronger form than Theorem A. In fact, as was shown in [2], if Theorem A were false, it would have to fail for a normal subgroup H of G. In the presence of this fact, Theorem A is contained in

Theorem B. Let $G_1 \subseteq G_2 \subseteq \cdots \subseteq G_n = G$ be a nondecreasing finite chain of normal subgroups of a finite p-group G and let H_1, H_2, \cdots, H_n be normal subgroups of G with $H_i \trianglelefteq G_i$ for all i. If

$$(H_1, H_2, \cdots, H_n) \subseteq (G_1, G_2, \cdots, G_n),$$

then

$$(H_1\phi(G_1), H_2\phi(G_2), \cdots, H_n\phi(G_n)) \subseteq (G_1, G_2, \cdots, G_n).$$

Proof. Suppose that the theorem is false for a certain n. Let G be of minimal order for which it is false and let H_1, H_2, \cdots, H_n be chosen such that if K_i is a normal subgroup of G and $H_i \subseteq K_i \subseteq G_i$ for any i, then

$$(H_1, H_2, \cdots, K_i, \cdots, H_n) = (G_1, G_2, \cdots, G_n).$$

For convenience, set $(H_1, H_2, \cdots, H_n) = A$, $(H_1\phi(G_1), H_2\phi(G_2), \cdots, H_n\phi(G_n)) = B$, and $(G_1, G_2, \cdots, G_n) = C$. First, it is noted that

1 This research was supported by the National Science Foundation.

2 The fact that G is noncyclic does not imply that $\phi(G)$ is the intersection of all normal subgroups of index p^k in G.
REMARKS ON A PAPER OF HOBBY AND WRIGHT

Thus if \(A \neq \langle 1 \rangle \), the relation

\[
B/A = (H_1\phi(G_1)/A, \cdots, H_n\phi(G_n)/A) \subset C/A
\]

holds according to the choice of \(G \) since in general \(\phi(G/N) = N\phi(G)/N \).
However, this implies that \(B \subset C \); hence \(A = \langle 1 \rangle \).

Let \(z \) be an element of order \(p \) in \(Z \), the center of \(G \). If the relation

\[
\langle z \rangle /\langle z \rangle = ((z)H_1/\langle z \rangle, \cdots, (z)H_n/\langle z \rangle)
\subset ((z)G_1/\langle z \rangle, \cdots, (z)G_n-1/\langle z \rangle, (z)G_n/\langle z \rangle) = \langle z \rangle C/\langle z \rangle
\]

holds, then

\[
\langle z \rangle B/\langle z \rangle = ((z)H_1\phi(G_1)/\langle z \rangle, \cdots, (z)H_n\phi(G_n)/\langle z \rangle) \subset \langle z \rangle C/\langle z \rangle,
\]

which implies that \(B \subset C \). Thus \(C = \langle z \rangle \).

Since all the subgroups involved are normal, from the linearity properties of commutators [1, p. 150] it follows that

\[
(H_1, \cdots, H_{k-1}, H_k\phi(G_k), H_{k+1}, \cdots, H_n)
\]

\[
= A(H_1, \cdots, H_{k-1}, \phi(G_k), H_{k+1}, \cdots, H_n) = \langle 1 \rangle.
\]

But \(H_k \subset H_k\phi(G_k) \) for some \(k \). Thus a contradiction has been established on the choice of the \(H_i \), and the theorem is proved.

References

The Institute for Advanced Study