A CHARACTERIZATION OF MONOMIALS

R. BOJANIC AND W. STOLL

A monomial of \(n \) complex variables is a function of the form

\[
P(z_1, \ldots, z_n) = \sum_{\gamma \in \mathbb{N}^n} a_\gamma z_1^{p_1} z_2^{p_2} \cdots z_n^{p_n}
\]

where \(p_1, \ldots, p_n \) are non-negative integers and where \(a \) is constant. The set

\[
E = \{(z_1, \ldots, z_n) \mid |z_1| < 1, \ldots, |z_n| < 1\}
\]

is called the unit polycylinder. The set

\[
D = \{(z_1, \ldots, z_n) \mid |z_1| = 1, \ldots, |z_n| = 1\}
\]

is said to be the distinguished boundary of \(E \). Note that \(D \) is not the whole boundary of \(E \).

We want to prove the following theorem:

The monomials are the only entire functions whose absolute value is constant on the distinguished boundary of the unit polycylinder.

Proof. Denote by \(\mathbb{C}^n \) the space of \(n \) complex variables. The elements are the vectors

\[
z = (z_1, \ldots, z_n)
\]

whose coordinates \(z_i \) are complex numbers.

Now, let \(f \) be an entire function, whose absolute value \(|f| \) is constant on \(D \). If \(|f| \) is identically zero on \(D \), then \(f \) is identically zero on \(\mathbb{C}^n \). Therefore, \(f \) is a monomial.

We may exclude this case and assume, without loss of generality, that \(|f(z)| = 1 \) for \(z \in D \). Now, we want to show that such an entire function \(f \) is either constant or has zeros in \(E \). Assume \(f(z) \neq 0 \) for \(z \in E \). Then, we have by a well-known theorem

\[
\begin{align*}
\max_{z \in \overline{E}} |f(z)| &= \max_{z \in \overline{D}} |f(z)| = 1, \\
\min_{z \in \overline{E}} |f(z)| &= \min_{z \in \overline{D}} |f(z)| = 1.
\end{align*}
\]

Therefore, \(f \) is constant. Consequently, \(f \) is either constant or has zeros in \(E \).

Now, we want to prove that \(f(z) \neq 0 \) for all \(z \) in

\[
A = \{(z_1, \ldots, z_n) \mid z_1 z_2 \cdots z_n \neq 0\}.
\]

Received by the editors February 6, 1961.

115
Define the function \(g \) by
\[
g(z_1, \ldots, z_n) = f\left(\frac{1}{\bar{z}_1}, \ldots, \frac{1}{\bar{z}_n}\right)
\]
on \(A \). This function is holomorphic on \(A \) since its real partial derivatives exist, are continuous, and satisfy the Cauchy-Riemann equations
\[
g_z^*(z_1, \ldots, z_n) = \frac{\partial}{\partial z_j} f z_j = \frac{1}{\bar{z}_j}.
\]
For \(z \in D \subset A \), we have
\[
g(z_1, \ldots, z_n) = f\left(\frac{1}{\bar{z}_1}, \ldots, \frac{1}{\bar{z}_n}\right) = f(z_1, \ldots, z_n)
\]
Therefore
\[
g(z_1, \ldots, z_n) \cdot f(z_1, \ldots, z_n) = 1 \quad \text{for } (z_1, \ldots, z_n) \in D.
\]
The function \(g \cdot f \) is holomorphic on \(A \) and identically one on \(D \). Since \(A \) is a connected, open neighborhood of \(D \), the function \(g \cdot f \) is equal to one on \(A \):
\[
f(z) \cdot g(z) = 1 \quad \text{for } z \in A.
\]
Therefore, we have \(f(z) \neq 0 \) for \(z \in A \).

Our function \(f \) vanishes at most on the planes \(\{(z_1, \ldots, z_n) | z_r = 0\} \). Therefore \(f \) has the form \(^1 \)
\[
f(z_1, \ldots, z_n) = z_1^{p_1} \cdots z_n^{p_n} \cdot h(z_1, \ldots, z_n)
\]
where \(p_1, \ldots, p_n \) are non-negative integers and \(h \) is an entire function which does not vanish at all, and whose absolute value is constant on \(D \). Consequently, \(h \) is a constant. We obtain
\[
f(z_1, \ldots, z_n) = a z_1^{p_1} \cdots z_n^{p_n}
\]
q.e.d.

\textit{University of Notre Dame}