ON A PROBLEM IN THE THEORY OF PARTITIONS

E. G. STRAUS

In this note we give an affirmative answer to a problem posed by Sherman K. Stein (Bull. Amer. Math. Soc. 66 (1960), 510). That is, we show that for every number \(m \), \(1 \leq m \leq p(n) \) where \(p(n) \) is the number of partitions of the positive integer \(n \), there exists a set \(A(m, n) \) of positive integers such that \(n \) has \(m \) partitions into elements of \(A(m, n) \). Our result generalizes to the case of partitions of vectors with nonnegative integral components.

Definition 1. Let \(S = \{ s_1, s_2, \ldots, s_k \} \) be a set of positive integers; then \(p(S, n) \) denotes the number of partitions of \(n \) into elements of \(S \). In particular we define \(p(S, 0) = 1 \) and \(p(S, n) = 0 \) for \(n < 0 \).

Lemma 1.

\[
p(S, n) = \sum_{i=1}^{k} p(S - s_i, n - s_i)
\]

where \(S_i = \{ s_1, s_2, \ldots, s_{i-1} \} \), \(S_1 = \emptyset \). (Note: this lemma is independent of the ordering of \(S \).)

Proof. The \(i \)th term in the sum counts the number of partitions of \(n \) into elements of \(S \) where the first term occurring is \(s_i \).

Corollary 1. If \(1 \in S \) then \(p(S, n) \) is a nondecreasing function of \(n \).

Corollary 2.

\[
p(S, n) \leq \sum_{l=0}^{n-1} p(S, l).
\]

Proof. By Lemma 1

\[
p(S, n) = \sum_{i=1}^{k} p(S - s_i, n - s_i)
\]

\[
\leq \sum_{i=1}^{k} p(S, n - s_i)
\]

\[
\leq \sum_{l=0}^{n-1} p(S, l).
\]

Received by the editors January 9, 1961.

1 This work has been supported in part by a grant from the National Science Foundation.
Corollary 3. If $1 \in S$ then $p(S, n+1) \leq p(S, n) + p(S, n-1)$.

Proof. We use simultaneous induction on n and k, the number of elements of S. If $n = 0$ then

$$p(S, 1) = 1 = p(S, 0) = p(S, 0) + p(S, -1)$$

for all S. If $k = 1$ then $S = \{1\}$ and

$$p(\{1\}, n + 1) = 1 = p(\{1\}, n) \leq p(\{1\}, n) + p(\{1\}, n - 1)$$

for all nonnegative n.

Now assume we had the minimal n and a minimal S for which the result is false then there is an $s \in S$, $s \neq 1$ and by Lemma 1

$$p(S, n + 1) = p(S, n + 1 - s) + p(S - \{s\}, n + 1)$$

$$\leq p(S, n - s) + p(S, n - 1 - s) + p(S - \{s\}, n)$$

$$+ p(S - \{s\}, n - 1)$$

$$\leq p(S, n) + p(S, n - 1).$$

Lemma 2. If $1 = a_1 \leq a_2 \leq \cdots \leq a_k \leq \cdots$ and $a_{k+1} \leq 2a_k$ where the a_k are integers, then for every integer n with $1 \leq n \leq a_1 + a_2 + \cdots + a_k$ there exist indices $1 \leq i_1 < i_2 < \cdots < i_j \leq k$ so that $n = a_{i_1} + \cdots + a_{i_j}$.

Proof. By induction on k. If $k = 1$ then $n = 1 = a_1$. Assume the lemma proved for $k - 1$. If $n \leq a_1 + \cdots + a_{k-1}$ then the lemma is true by the induction hypothesis. If $n > a_1 + \cdots + a_{k-1}$ then

$$n > a_k \left(\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{k-1}}\right) = a_k \left(1 - \frac{1}{2^{k-1}}\right) \geq a_k - 1$$

so that $n \geq a_k$. Thus $0 \leq n - a_k \leq a_1 + \cdots + a_{k-1}$ and the lemma holds, by the induction hypothesis.

Lemma 3. If $1 \in S$ then the sequence $p(S, 1), p(S, 2), \cdots, p(S, k), \cdots$ satisfies the hypothesis of Lemma 2.

Proof. We have $p(S, 1) = 1$ and $p(S, k+1) \geq p(S, k)$ by Corollary 1; finally $p(S, k+1) \leq 2p(S, k)$ by Corollary 3 of Lemma 1.

Lemma 4. If $S \subset \{1, 2, \cdots, \lfloor n/2 \rfloor\}$ and $T \subset \{\lfloor n/2 \rfloor + 1, \cdots, n\}$ then $p(S \cup T, n) = p(S, n) + \sum_{t \in T} p(S, n - t)$.

Proof. Since $t + t' > n$ for any $t, t' \in T$ a partition of n into elements of $S \cup T$ is either a partition into elements of S alone or t plus a partition of $n - t$ into elements of S.

Corollary. If $1 \in S$ and $S \subset \{1, 2, \cdots, \lfloor n/2 \rfloor\}$ then for any integer m with
\begin{align*}
\rho(S, n) & \leq m \\
& \leq \rho(S, n) + \sum_{l=0}^{(n-1)/2} \rho(S, l)
\end{align*}

there exists a set \(T \subseteq \{ \lfloor n/2 \rfloor + 1, \ldots, n \} \) so that \(\rho(S \cup T, n) = m \).

Lemma 5.

\[\rho \left(S \cup \left\{ \left\lfloor \frac{n}{2} \right\rfloor \right\}, n \right) \leq 1 + \rho(S, n) + \sum_{l=0}^{(n-1)/2} \rho(S, l). \]

Proof. If \(\lfloor n/2 \rfloor \in S \) the result is obvious. If \(\lfloor n/2 \rfloor \notin S \) then

\[\rho \left(S \cup \left\{ \left\lfloor \frac{n}{2} \right\rfloor \right\}, n \right) = \rho(S, n) + \rho \left(S, n - \left\lfloor \frac{n}{2} \right\rfloor \right) + \rho \left(S, n - 2 \left\lfloor \frac{n}{2} \right\rfloor \right) \]

so that the lemma reduces to

\[\rho(S, m + 1) \leq \sum_{l=0}^{m} \rho(S, l), \quad m = \left\lfloor \frac{n - 1}{2} \right\rfloor; \]

which is Corollary 2 of Lemma 1.

Lemma 6. If \(1 \in S \) and \(S \subseteq \{ 1, 2, \ldots, m-1 \} \) where \(m < \lfloor n/2 \rfloor \) then

\[\rho(S \cup \{ m \}, n) \leq 1 + \rho \left(S \cup \left\{ \left\lfloor \frac{n}{2} \right\rfloor \right\}, n \right) + \sum_{l=0}^{(n-1)/2} \rho \left(S \cup \left\{ m + 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \right\}, l \right) \]

\[= 1 + \rho(S \cup \{ m + 1, \ldots, n \}, n). \]

Proof. The hypothesis implies \(m \geq 2 \). By repeated application of Lemma 1 we get

\[\rho(S \cup \{ m \}, n) = \sum_{l=0}^{\lfloor n/m \rfloor} \rho(S, n - lm) \]

and by Corollary 3 of Lemma 1 together with Lemma 1
\[
\sum_{l=0}^{\left\lceil n/m \right\rceil} p(S, n - lm)
\leq p \left(S, n - \left\lceil \frac{n}{m} \right\rceil m \right) + p(S, n) + \sum_{l=1}^{\left\lceil n/m \right\rceil-1} p(S, n - lm)
\leq p \left(S, n - \left\lfloor \frac{n}{m} \right\rfloor m \right) + p(S, n)
+ \sum_{l=1}^{\left\lceil n/m \right\rceil-1} (p(S, n - lm - 1) + p(S, n - lm - 2))
\leq 1 + p(S, n) + \sum_{i=0}^{n-m} p(S, l)
\leq 1 + p(S, n) + \sum_{k=1}^{n-m} p(S \cup \{m + 1, \ldots, m + k\}, n - m - k)
= 1 + p(S \cup \{m + 1, \ldots, n\}, n).
\]

Theorem 1. For every integer \(m, 1 \leq m \leq p(n) \), there exists a set \(S \subseteq \{1, 2, \ldots, n\} \) such that \(p(S, n) = m \).

Proof. We construct a sequence \(S_1, S_2, \ldots, S_n \) of subsets of \(\{1, 2, \ldots, \lfloor n/2 \rfloor\} \) as follows:

1. \(S_1 = \{1\}, \quad S_2 = \{1, \lfloor n/2 \rfloor\} \).
2. Let \(r \) be the maximal element \(\leq \lfloor n/2 \rfloor \) which is not contained in \(S_i \) then \(S_{i+1} = S_i \cup \{r\} - \{r+1, \ldots, \lfloor n/2 \rfloor\} \).

It is clear that this sequence terminates only with \(S_n = \{1, 2, \ldots, \lfloor n/2 \rfloor\} \). According to the corollary to Lemma 4 the numbers \(p(S_i \cup T, n) \), where \(T \subseteq \{\lfloor n/2 \rfloor + 1, \ldots, n\} \), fill the interval \(I_i \) of numbers \(p(S_i, n) \leq m \leq p(S_i \cup \{\lfloor n/2 \rfloor + 1, \ldots, n\}, n) \). By Lemmas 5 and 6 the union \(J_i = I_1 \cup I_2 \cup \cdots \cup I_i \) is itself an interval so that \(J_n \) contains all \(m \) with \(1 \leq m \leq p(n) \).

One might ask whether our theorem has an analogue if \(p(n) \) is replaced by \(p(S, n) \), that is whether for any \(m \) with \(1 \leq m \leq p(S, n) \) there is a subset \(S' \) of \(S \) so that \(p(S', n) = m \). The answer is obviously no, since \(p(\{1, 2\}, n) = \lfloor n/2 \rfloor + 1 \) while \(p(\{1\}, n) = 1 \) and \(p(\{2\}, n) \leq 1 \). It is, however, possible to generalize our result to the partition of vectors.

Definition. Let \(n = (n_1, n_2, \ldots, n_k) \) where the \(n_i \) are integers; then \(p_k(n) \) is the number of partitions of \(n \) into \(k \)-vectors whose components are nonnegative integers not all of which are zero.

Theorem 2. Let \(m \) be an integer, \(1 \leq m \leq p_k(n) \) then there exists a set
S of nonnegative nonzero k-vectors such that the number $p_k(S, n)$ of partitions of n into elements of S is m.

The proof involves only simple modifications of the steps which led to Theorem 1. We outline them here. Lemma 1 remains valid. In Corollary 1 the condition $1 \in S$ is to be replaced by the condition that S contains all the unit-vectors. By "nondecreasing" we now refer to the partial ordering given by $a < b$ if $b - a$ has nonnegative components. In Corollary 2 the summation is understood to be over all vectors which precede n in the above sense.

In Corollary 3 the vectors $n+1$ and $n-1$ must be understood as the result of adding and subtracting from n the same (arbitrary) unit vector. We need a slight modification of this result:

If S contains all unit vectors and $n+1 = n'+1'$ where 1 and $1'$ are two different unit vectors then

$$p_k(S, n + 1) \leq p_k(S, n) + p_k(S, n').$$

Instead of the subsequent lemmas we get

Lemma 3'. If S contains the unit vectors then the set $\{p_k(S, t)\}$ where t ranges over all nonnegative vectors with $l < n$ can be arranged as a non-decreasing sequence which satisfies the hypothesis of Lemma 2.

Lemma 4'. If $S \cap T = \emptyset$ and $2t > n$ for every $t \in T$, then

$$p_k(S \cup T, n) = p_k(S, n) + \sum_{t \in T} p_k(S, n - t).$$

Corollary. Let S contain the unit vectors and $S \cap T = \emptyset$ where T is the set of all vectors t which satisfy $2t > n$. Then for every integer m with $p_k(S, n) \leq m \leq p_k(S \cup T, n)$ there exists a $T' \subseteq T$ so that $p_k(S \cup T', n) = m$.

Lemma 5'. Let $n^{(i)} = (n_1, n_2, \ldots, [n_i/2], \ldots, n_k)$ and let T be as in the preceding corollary. Then

$$p_k(S \cup \{n^{(i)}\}, n) \leq 1 + p_k(S \cup T, n).$$

Lemma 6'. Let T be as above and let S contain the unit vectors with $S \cap T = \emptyset$. Let $m \in S \cup T$ be a vector all whose successors are contained in $S \cup T$. Let S_m denote the set of successors of m. Then

$$p_k(S \cup \{m\} - S_m, n) \leq 1 + p_k(S \cup T, n).$$

None of the proofs involves any new ideas and we therefore omit them. Theorem 2 now follows by exactly the same argument that led to Theorem 1.

University of California, Los Angeles