A NOTE ON HOMOGENEOUS COMPLEX CONTACT MANIFOLDS

WILLIAM M. BOOTHBY

1. Introduction. A complex contact manifold is by definition a complex analytic manifold of odd dimension \(2n+1 \) over which is defined to within an analytic scalar multiple an analytic pfaffian form \(\omega \) of class \(2n+1 \), i.e. such that \(\omega \wedge d\omega^* \neq 0 \) at any point. Such a manifold is given \([4]\) by a covering by coordinate neighborhoods \(\{ U_i \} \) on each of which is defined a form \(\omega_i \) of the type described with \(\omega_i = f_i \omega_j \) whenever \(U_i \cap U_j \neq \emptyset \), \(f_{ij} \) being nonvanishing, analytic scalar functions. A natural question arises as to whether the contact form may be chosen globally, that is the \(\omega_i \) so chosen that each \(f_{ij} = 1 \). It was shown by S. Kobayashi \([4]\) that this can be done if and only if the first Chern class, \(c_1(M) \), vanishes. Here and in what follows we will suppose \(M \) to be compact. Under the additional assumption that \(M \) is simply connected and homogeneous both with respect to the complex and the contact structure the author \([2]\) characterized and enumerated those manifolds for which \(c_1(M) = 0 \). In what follows it is shown that these additional assumptions already imply \(c_1(M) = 0 \), so that combining this with the results of \([2]\) we obtain:

Theorem I. Let \(M \) be a compact, simply connected, homogeneous complex contact manifold containing more than one point. Then \(c_1(M) \neq 0 \), hence \(\omega \) can not be globally defined; \(M \) is Kählerian; and there is exactly one such manifold corresponding to each of the classes of simple Lie groups \(A_n, B_n, C_n, \) and \(D_n \) and the five exceptional simple groups. No other manifolds satisfying these hypotheses exist.

When we make no homogeneity assumption, the classical example of such a manifold is the bundle of complex "co-directions" over a complex analytic manifold of dimension \(n+1 \): the fibres are complex projective spaces of dimension \(n \), and with local coordinates \(z^1, \ldots, z^{n+1} \) in the base space, \(p_1, \ldots, p_{n+1} \) (homogeneous) coordinates in the fibre we have \(\omega = p_1dz^1 + \cdots + p_{n+1}dz^{n+1} \). In this connection the question arises as to whether the spaces of Theorem I are already included in this example. This question is answered by the following:

Received by the editors March 13, 1961.

1 The author was supported by a grant from the National Science Foundation.

2 Throughout dimension refers to complex dimension and analytic means complex analytic.
Theorem II. With the exception of the manifolds corresponding to \(A_n \), none of the manifolds of Theorem I can be homeomorphic to a bundle of complex "co-directions" over a complex manifold, i.e. to an example of the type described above.

2. Proof of Theorem I. Following H. C. Wang [5], we will refer to a compact, simply connected, homogeneous complex manifold as a \(C \)-space. The notation used in this section is that of [5] and [2] and for brevity will not be redefined. Suppose \(G/L \) to be a \(C \)-space with a globally defined contact form \(\omega \) which is \(G \)-invariant. Without loss of generality we suppose \(G \) to be complex semi-simple. By proceeding as in the real case [3, §4] we will arrive at a contradiction which shows the impossibility of a globally defined contact form. This together with the results of [2] gives Theorem I. Let

\[K = \{ g \in G \mid \text{ad}(g)^* \omega^* = \omega^* \} \]

where \(\text{ad}(g)^* \) denotes the transformation on forms on the Lie algebra \(\hat{G} \) induced by the inner automorphism \(\text{ad}(g) : G \to G \) and \(\omega^* = p^* \omega \), \(p : G \to G/L \) being the natural map. Clearly \(K \) is a closed subgroup and contains \(L \). As in the real case we see \(\hat{K} = \{ X \in \hat{G} \mid d\omega^*(X, \hat{G}) = 0 \} \) and therefore \(\hat{K} \) is a complex Lie algebra; hence \(K \) is a closed, complex subgroup and \(G/K \) a homogeneous complex manifold. There is a natural analytic map of \(G/L \) onto \(G/K \) so we know \(G/K \) to be compact and connected. If \(K_0 \) is the identity component of \(K \), then the same statements apply to \(K_0 \) and \(G/K_0 \) provided \(L \) is connected, which is, in fact, the case since \(G \) is connected and \(G/L \) is simply connected. Then from the homotopy sequence of \(G/L \to G/K_0 \) it follows that \(G/K_0 \) is simply connected and hence is a \(C \)-space. It contains more than a single point for, as in the real case, \(\omega \wedge d\omega^* \neq 0 \) implies \(\dim \hat{K} = 1 + \dim \hat{L} \) and, if \(G/K_0 \) is a single point, then \(K_0 = G \) and \(K_0/L \) is an abelian group of complex dimension one. Since it is compact and simply connected, it too contains but one point which is contrary to assumption.

Now let \(Z \in \hat{G} \) correspond to \(\omega^* \) relative to the Killing form \((X, Y) \) on \(\hat{G} \). Then \(\omega^*(X) = (Z, X) \) and \(d\omega^*(X, Y) = \omega([X, Y])/2 \). Thus \(d\omega^*(X, Y) = 0 \) if and only if \(([Z, X], Y) = (Z, [X, Y]) = 0 \). Since the Killing form is nondegenerate, the first of these vanishes for all \(Y \in \hat{G} \) if and only if \([X, Z] = 0 \), therefore \(\hat{K} = \hat{C}(Z) \), the centralizer of \(Z \), i.e. \(\hat{C}(Z) = \{ X \mid [X, Z] = 0 \} \). The desired contradiction is then obtained from the following:

Lemma. Let \(G \) be a connected, complex, semi-simple Lie group and \(K \) a closed, connected, complex subgroup whose Lie algebra \(\hat{K} \) is the centralizer of some \(Z \in \hat{G} \). Then, if \(G/K \) is a \(C \)-space, it contains only one point.

Proof. According to Wang [5], if \(G/K \) is a \(C \)-space, then for the
Lie algebras we have the following situation. There exists a Cartan subalgebra $\hat{H} \subset \hat{G}$ with rational basis $h_1, \ldots, h_b, h_{b+1}, \ldots, h_a, h_{a+1}, \ldots, h_1$, with $b = 2u$, where \hat{K} has as basis $k_1, \ldots, k_u, h_{b+1}, \ldots, h_a, h_{a+1}, \ldots, h_1; E_{\pm a_1}, \ldots, E_{\pm a_r}, E_{e_1}, \ldots, E_{e_r}$, where $k_1 = i h_1 + c h_2$, $k_2 = ih_2 + ch_4$, \ldots, $k_u = ih_{b-1} + ch_b$, c a real number, and $\alpha_1, \ldots, \alpha_r, \sigma_1, \ldots, \sigma_r$ are all positive roots and $\pm \alpha_i, \ldots, \pm \alpha_r$ are all those roots which vanish on each of the vectors h_1, \ldots, h_a. The maximal semi-simple subalgebra \hat{Q} of \hat{K} is spanned by h_{a+1}, \ldots, h_i and $E_{\pm a_1}, \ldots, E_{\pm a_r}$. Since $Z \in \hat{K}$, we may write with suitable $h \in \hat{H} \cap \hat{K}$, $Z = h + \sum_{i=1}^{a} a_i E_{a_i} + \sum_{j=1}^{b} b_j E_{-a_j} + \sum_{f=1}^{r} d_j E_{e_f}$. We shall prove $Z = 0$, whence $\hat{G} = \hat{K}$ and G/K is a single point. If $X \in \hat{K}$ is either in \hat{H} or a root vector E_i, then since $[A, Z] = 0$, each summand of $[X, Z] + \sum_{i=1}^{a} a_i [X, E_{a_i}] + \sum_{j=1}^{b} b_j [X, E_{-a_j}] + \sum_{f=1}^{r} d_j [X, E_{e_f}]$ vanishes since each lies in a different summand of a direct sum decomposition of \hat{G}. Thus $[E_i, h] = \sigma(h) E_i$ vanishes for each positive root σ, hence $h = 0$. Multiplying by E_{+a} or E_{-a} we obtain $a_i = 0 = b_i$ for each i. Finally let σ_j be one of the roots $\sigma_1, \ldots, \sigma_r$ and $k, 1 \leq k \leq a$, be such that $\sigma_j(h_k) \neq 0$. There must be at least one such or σ_j would be among the $\pm \alpha_i$. If $b+1 \leq k \leq a$, then, since $h_k \in \hat{K}$ and thus $[h_k, Z] = 0$, we at once get $d_{j_0}(h_k, E_{e_{j_0}}) = \sigma_{j_0}(h_k)d_{j_0}E_{e_{j_0}} = 0$ and thus $d_{j_0} = 0$. But, if $1 \leq k \leq b$, then either $[ih_k + ch_{k+1}, Z] d_{j_0} = 0$ or $[ih_{k-1} + ch_k, Z] d_{j_0} = 0$ according to the parity of k. In either case $d_{j_0} = 0$ unless the term in brackets vanishes. But this cannot happen since, say in the first case, vanishing of the term in brackets would imply $\sigma_{j_0}(h_k) + c \sigma_{j_0}(h_{k+1}) = 0$ and thus since σ_{j_0} is real on h_k and h_{k+1}, $\sigma_{j_0}(h_k) = 0 = \sigma_{j_0}(h_{k+1})$, contrary to our choice of h_k. A corresponding argument applies to the other case and to each of the σ_j, $j = 1, \ldots, r$. Thus each $d_j = 0$ and so $Z = 0$ as was claimed.

3. Proof of Theorem II. We now consider the possibility that the homogeneous complex contact manifold $M = G/L$ might be a bundle of complex co-directions over a complex analytic manifold B of dimension $n + 1$. In this case the fibre F would be a complex projective space of dimension n. By Theorem I M is a Kähler manifold, F is also Kählerian, and by Blanchard [1, Prop. II.2, p. 184] we see that B is Kählerian. Concerning the topology of M, F, and B we use the fact that $H^1(F) = 0$, which implies that the transgression $H^1(F) \to H^2(B)$ vanishes, together with the fact that $\pi_1(B) = 0$, which follows from the fact that F and M are both simply connected spaces and, of course, implies that $\pi_1(B)$ acts trivially on the cohomology groups of F. This allows us to use Blanchard, op. cit., Theorem II 1.2, p. 178, according to which the real cohomology of M is isomorphic...
to that of $B \times F$. In particular for the Poincaré polynomials of M, F, and B we have

$$P_M(t) = P_F(t)P_B(t) = (1 + t^2 + \cdots + t^n)(1 + at^2 + \cdots + t^{n+1})$$

where $a \geq 1$ since B is Kählerian. It follows that the second Betti number of M, $p_2(M) \geq 2$. Now let $M = G/L$, G complex semi-simple as before. It is known that $\pi_3(G) = 0$. The homotopy sequence of the bundle $G \to G/L$ yields the exact sequence:

$$0 \to \pi_2(G/L) \to \pi_1(L) \to \pi_1(G) \to 0,$$

which, in particular, says that the rank of $\pi_3(G/L)$ is no greater than the rank of $\pi_1(L)$. Since G/L is simply connected, $\pi_2(G/L) \cong H^2(G/L)$; thus $p_2(M) \leq \text{rank } \pi_1(L)$. Now examining the individual cases in Theorem I and replacing G and L by their maximal compact subgroups G', L', cf. [2], shows that $L' = S U(n)$ where $S U(n)$ is semi-simple and thus rank $\pi_1(L) = r$. Since $2 \leq p_2(M) \leq r$ we must have $r \geq 2$, but this occurs only in the case corresponding to A_n where $G' = S U(n + 1)$ and $L' = S U(n - 1) \times T^2$.

4. Remarks. I. Since every homogeneous complex contact manifold, at least if it is simply connected, is a Kähler manifold, one might ask if this is true in general. However, from Blanchard, op. cit., we see that if B is a non-Kählerian, compact, complex analytic manifold then no bundle over it can be Kählerian. Thus the bundle of co-directions furnishes an example of a non-Kählerian compact complex contact manifold. It will be simply connected if B is chosen simply connected.

II. In the one exceptional case of Theorem II we have $S U(n + 1) \supset S U(n) \times T^1 \supset S U(n - 1) \times T^2$ so that denoting $S U(n + 1)/S U(n - 1)$ by M, $S U(n + 1)/S U(n) \times T^1$ by B and $S U(n) \times T^1/S U(n)$ by F we see that M is a bundle over B whose fibre F is a projective space $P_{n-1}(C)$ of dimension $n - 1$ and whose base B is a projective space $P_n(C)$ of dimension n. And in fact the bundle is homeomorphic to the bundle of tangent co-directions to n dimensional complex projective space.

A proof of this last statement may be sketched as follows. We regard $P_n(C)$ as the space of directions through the origin in C_{n+1}, $n + 1$ dimensional Hermitian space, and the complex n-plane orthogonal to a given direction as the tangent space to the corresponding point of $P_n(C)$. Then $S U(n + 1)$ is transitive on the pairs $(x, d) = (\text{point } x, \text{tangent direction at } x)$ of $P_n(C)$. The subgroups fixing respectively x and (x, d) are $S U(n) \times T^1$ and $S U(n - 1) \times T^2$. Then
the result follows easily if we note that the space of tangent co-directions to $P_n(C)$ is homeomorphic to the space of tangent directions as we may see by choosing a Hermitian metric on $P_n(C)$.

BIBLIOGRAPHY

NORTHWESTERN UNIVERSITY