Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Upper semicontinuous decompositions of the $ n$-sphere


Author: Kyung Whan Kwun
Journal: Proc. Amer. Math. Soc. 13 (1962), 284-290
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9939-1962-0140089-7
MathSciNet review: 0140089
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Upper semicontinuous decompositions of $ {E^3}$, Ann. of Math. 65 (1957), 363-374. MR 0092960 (19:1187f)
  • [2] -, Approximating surfaces with polyhedral ones, Ann. of Math. 65 (1957), 456-483. MR 0087090 (19:300f)
  • [3] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 0117695 (22:8470b)
  • [4] O. G. Harrold, Jr., A sufficient condition that a monotone image of the three-sphere be a topological three-sphere, Proc. Amer. Math. Soc. 9 (1958), 846-850. MR 0103454 (21:2223)
  • [5] W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941. MR 0006493 (3:312b)
  • [6] E. E. Moise, Affine structures in 3-manifolds. II. Positional properties of 2-spheres, Ann. of Math. 55 (1952), 172-176. MR 0045380 (13:574a)
  • [7] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ. Vol. 32, Amer. Math. Soc., New York, 1949. MR 0029491 (10:614c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1962-0140089-7
Article copyright: © Copyright 1962 American Mathematical Society

American Mathematical Society