CONVERGENCE OF APPROXIMATING POLYNOMIALS

PHILIP C. CURTIS, JR.1

I. The problem we wish to consider is the following. For each positive integer \(n\), let \(E_n\) be a finite subset of \([-1, 1]\) containing at least \(n\) points. For a real-valued continuous function \(f\) defined on \([-1, 1]\) let \(p_n(f, E_n)\) be the unique polynomial of degree at most \(n-1\) of best approximation in the Chebycheff sense to \(f\) on \(E_n\). Is it possible to choose a fixed sequence \(\{E_n\}\) so that for each \(f\), continuous on \([-1, 1]\), \(p_n(f, E_n)\) converges to \(f\) uniformly on \([-1, 1]\)?

A classical result of Faber [4] states that if, for each \(n\), \(E_n\) contains exactly \(n\) points, this choice is never possible. In this case, of course, \(p_n(f, E_n)\) is just the polynomial which interpolates to \(f\) at the points of \(E_n\).

In this paper we shall prove that the result of Faber still holds if each \(E_n\) contains no more than \(re + 1\) points. On the other hand, letting \(\|f\| = \sup_{-1 \leq t \leq 1} |f(t)|\), we obtain \(\|f - p_n(f, E_n)\| \to 0\) for each \(f\) continuous on \([-1, 1]\), if and only if there exists a constant \(K\) independent of \(n\), such that for each polynomial \(p_n(x)\) of degree at most \(n-1\), if \(|p_n(x)| \leq 1\) for each \(x \in E_n\), then \(\|p_n\| \leq K\).

The existence of such sets \(E_n\) was first proved by Bernstein [1, pp. 55–57]. In fact \(E_n = \{\cos ((k \pi / m)) \}, k = 0, 1, \cdots, m\), where \(m/n > \pi / 2 \cdot 2^{1/2}\) is a simple example. It is further shown in [1] that for each fixed \(\lambda > 1\) if \(k_n\) satisfies \(k_n/n > \lambda\) then we may choose a sequence \(\{E_n\}\) with the desired properties and such that the cardinality of \(E_n = k_n\). Namely, assuming \(k_n \leq 2n\), let \(E_n\) consist of the points \(\cos((2k - 1)/2n)\pi, k = 1, \cdots, n\), together with the points \(\cos((l\pi / n)\) where \(l\) is an integer satisfying \(k_n - n - 1 = [n/l]\) and \(t = 0, 1, \cdots, [n/l]\).

The author wishes to express appreciation for valuable conversations with W. Cheney and Y. Katznelson on these matters.

II. Let \(C = C[-1, 1]\), the Banach space of real-valued continuous functions on \([-1, 1]\) provided with the norm \(\|f\| = \sup_{-1 \leq t \leq 1} |f(t)|\). Let \(H_n\) be the \(n\) dimensional sub-space of polynomials of degree \(n-1\). Denote by \(P_n\) the mapping \(f \mapsto p_n(f, E_n)\). \(P_n\) is a continuous mapping of \(C\) onto \(H_n\) satisfying \(P_n P_n = P_n\) for \(m \geq n\). In general, \(P_n\) is not linear, but if \(E_n\) contains either \(n\) or \(n+1\) points, then \(P_n\) is linear which is the crucial fact needed in the following:

Received by the editors December 23, 1960 and, in revised form, April 24, 1961.

1 This research was done at the Space Technology Laboratories, Los Angeles and was supported by the United States Air Force.

385
Theorem 1. For \(n = 1, 2, \ldots \) fix a sequence of finite subsets \(E_n \) of \([-1, 1]\). If each \(E_n \) contains either \(n \) or \(n+1 \) points, then there exists an \(f \in C \) to which \(p_n(f, E_n) \) fails to converge uniformly on \([-1, 1]\).

Proof. Assume for the moment that \(P_n \) is linear for each \(n \). Let \(f \in H_n \). Then if \(m > n \), \(P_m(f) = f \) since \(P_m \) maps \(C \) onto \(H_n \) and \(P_m P_n = P_n \). By the Weierstrass approximation theorem the polynomials are dense in \(C \), hence we may infer from the principle of uniform boundedness [3, Theorem II.3.6] that \(P_n(f) \to f \) for each \(f \in C \) iff \(\sup_n \| P_n \| < \infty \), where \(\| P_n \| = \sup_{x \in [-1,1]} \| P_n(f) \| \). But by [5, Hilfssatz 3, p. 495] if \(P_n \) is any bounded projection of \(C \) onto \(H_n \), \(\| P_n \| \geq \ln(n-1)/8\pi^{1/2} \).

Now \(P_n \) is clearly linear if \(E_n \) contains exactly \(n \) points. If \(E_n \) contains \(n+1 \) points \(x_i, -1 \leq x_1 < x_2 < \cdots < x_{n+1} \leq 1 \), let \(q_{n+1}(x) = \sum_{k=0}^n a_k x^k \) and \(r_{n+1}(x) = \sum_{k=0}^n b_k x^k \) be the unique polynomials determined by the conditions \(q_{n+1}(x_i) = (-1)^i, r_{n+1}(x_i) = f(x_i), i = 1, 2, \ldots, n+1 \). It is easily seen by considering the determinants involved that \(a_n \neq 0 \). Therefore, let \(p_n(x) = r_{n+1}(x) - (b_n/a_n) q_{n+1}(x) \). The mapping \(f \to p_n \) is clearly linear, since \(f \to r_{n+1} \) and \(f \to b_n \) are both linear. But \(f(x_i) - p_n(x) = (b_n/a_n)(-1)^i, i = 1, 2, \ldots, n+1 \). Therefore, \(p_n = p_n(f, E_n) \) by the classical result of de la Vallée Poussin [2] which completes the proof.

We note two facts. First, it may be easily verified that if \(E_n \) contains more than \(n+1 \) points, \(P_n \) is never linear. Secondly, if \(q_n(f, E_n) \) denotes the polynomial of best approximation to \(f \) on \(E_n \) in the sense of least squares, then the same argument as above shows that if \(\{ E_n \} \) is any sequence of finite subsets of \([-1, 1]\) containing at least \(n \) points, then for some \(f \in C \), \(q_n(f, E_n) \) fails to converge uniformly to \(f \). This follows since the mapping \(f \to q_n(f, E_n) \) is always linear and idempotent.

III. We now prove the convergence criterion.

Theorem 2. For each \(n > 0 \) let \(E_n \) be a finite subset of \([-1, 1]\). Then \(\| f - p_n(f, E_n) \| \to 0 \) for each \(f \in C \) iff there exists a constant \(K \) such that if \(p \in H_n \), \(|p(x)| \leq 1, x \in E_n \), then \(\| p \| < K \).

Proof. This is a theorem of uniform boundedness type, and although the operators \(P_n \) are nonlinear the proof resembles that for the linear case.

With no loss in generality, we assume each \(E_n \) contains at least \(n+1 \) points. For fixed \(E_n \) and \(p \in H_n \) let \(\delta(p) = \sup_{x \in E_n} |f(x) - p(x)| \). Then by a well-known result of de la Vallée Poussin [2] \(p_n = p_n(f, E_n) \) is characterized uniquely by the condition that there exist \(n+1 \) points \(x_i \) in \(E_n \), \(x_i \leq x_{i+1} \), for which either
\[f(x_i) - p_n(x_i) = (-1)^i \delta(p_n), \quad i = 1, 2, \ldots, n + 1, \]
or
\[f(x_i) - p_n(x_i) = (-1)^{i+1} \delta(p_n), \quad i = 1, 2, \ldots, n + 1. \]

From this it follows easily that the operator \(P_n \) is homogeneous, and if \(q \) is a polynomial of degree \(< n\), then for each \(f \in C \), \(P_n(f + q) = P_n(f) + q \). Moreover \(E_n \) satisfies the condition of the theorem iff \(\sup_n \| P_n \| < \infty \). For, by the above remarks, if \(p \in H_n \) and \(\| p(x) \| \leq 1 \), \(x \in E_n \), then \(p = P_n(f, E_n) \) for some \(f \). \(\| f \| \leq 2 \). Conversely, if \(\| f \| \leq 1 \), then \(\| p_n(x) \| \leq 2 \) for \(x \in E_n \), for otherwise \(p(x) = 0 \) would provide a better approximation on \(E_n \). Therefore, suppose \(\sup_n \| P_n \| = K < \infty \). For each \(\varepsilon > 0 \) choose a polynomial \(q \) such that
\[\| f - q \| < \varepsilon. \]
If \(n \) is the degree of \(q \) and \(n > n_\varepsilon \), then
\[\| f - P_n(f) \| \leq \| f - q \| + \| q - P_n(f) \| \leq \| f - q \| + \| P_n(q - f) \| \leq \varepsilon(1 + K). \]

Therefore, \(\| f - P_n(f) \| \to 0 \) and the condition is sufficient.

Conversely, suppose \(\| f - P_n(f) \| \to 0 \) for each \(f \in C \). Since each \(P_n \) is continuous, \(S_n,k = \{ f \in C : \| P_n(f) \| \leq k \} \) is a closed subset of \(C \). Therefore, by the Baire category theorem, for some \(k > 0 \), \(S_k = \bigcap_{n=1}^{\infty} S_n,k \) contains an open set. Consequently, there exists a polynomial \(q(x) \) and a positive number \(\delta \) such that if \(\| f \| < \delta \), then \(f + q \in S_k \).

Hence, for \(n > \) degree of \(q \) and \(\| f \| < \delta \),
\[\| P_n(f) \| \leq \| P_n(q) \| + \| P_n(f - q) \| \leq \| q \| + k. \]

Using this and the continuity of each \(P_n \) it follows that
\[\sup_n \| P_n(f) \| < \infty, \quad \| f \| < \delta, \]
and the theorem is proved.

Bibliography

University of California, Los Angeles