CONVERGENCE OF APPROXIMATING POLYNOMIALS

PHILIP C. CURTIS, JR.1

I. The problem we wish to consider is the following. For each positive integer \(n \), let \(E_n \) be a finite subset of \([-1, 1]\) containing at least \(n \) points. For a real-valued continuous function \(f \) defined on \([-1, 1]\) let \(p_n(f, E_n) \) be the unique polynomial of degree at most \(n - 1 \) of best approximation in the Chebycheff sense to \(f \) on \(E_n \). Is it possible to choose a fixed sequence \(\{E_n\} \) so that for each \(f \), continuous on \([-1, 1]\), \(p_n(f, E_n) \) converges to \(f \) uniformly on \([-1, 1]\)?

A classical result of Faber [4] states that if, for each \(n \), \(E_n \) contains exactly \(n \) points, this choice is never possible. In this case, of course, \(p_n(f, E_n) \) is just the polynomial which interpolates to \(f \) at the points of \(E_n \).

In this paper we shall prove that the result of Faber still holds if each \(E_n \) contains no more than \(n + 1 \) points. On the other hand, letting \(\|f\| = \sup_{-1 \leq t \leq 1} |f(t)| \), we obtain \(\|f - p_n(f, E_n)\| \to 0 \) for each \(f \) continuous on \([-1, 1]\), if and only if there exists a constant \(K \) independent of \(n \), such that for each polynomial \(p_n(x) \) of degree at most \(n - 1 \), if \(|p_n(x)| \leq 1 \) for each \(x \in E_n \), then \(\|p_n\| \leq K \).

The existence of such sets \(E_n \) was first proved by Bernstein [1, pp. 55–57]. In fact \(E_n = \{\cos(k\pi/m)\}, \ k = 0, 1, \cdots, m \), where \(m/n > \pi/2 \cdot 2^{1/2} \) is a simple example. It is further shown in [1] that for each fixed \(\lambda > 1 \) if \(k_n \) satisfies \(k_n/n > \lambda \) then we may choose a sequence \(\{E_n\} \) with the desired properties and such that the cardinality of \(E_n = k_n \). Namely, assuming \(k_n \leq 2n \), let \(E_n \) consist of the points \(\cos((2k - 1)/2n)\pi, \ k = 1, \cdots, n \), together with the points \(\cos(l\pi/n) \) where \(l \) is an integer satisfying \(k_n - n - 1 = [n/l] \) and \(t = 0, 1, \cdots, \frac{n}{l} \).

The author wishes to express appreciation for valuable conversations with W. Cheney and Y. Katznelson on these matters.

II. Let \(C = C[-1, 1] \), the Banach space of real-valued continuous functions on \([-1, 1]\) provided with the norm \(\|f\| = \sup_{-1 \leq t \leq 1} |f(t)| \). Let \(H_n \) be the \(n \) dimensional sub-space of polynomials of degree \(n - 1 \). Denote by \(P_n \) the mapping \(f \to p_n(f, E_n) \). \(P_n \) is a continuous mapping of \(C \) onto \(H_n \) satisfying \(P_m P_n = P_n \) for \(m \geq n \). In general, \(P_n \) is not linear, but if \(E_n \) contains either \(n \) or \(n + 1 \) points, then \(P_n \) is linear which is the crucial fact needed in the following:

Received by the editors December 23, 1960 and, in revised form, April 24, 1961.

1 This research was done at the Space Technology Laboratories, Los Angeles and was supported by the United States Air Force.

385
Theorem 1. For \(n = 1, 2, \ldots \) fix a sequence of finite subsets \(E_n \) of \([-1, 1]\). If each \(E_n \) contains either \(n \) or \(n+1 \) points, then there exists an \(f \in C \) to which \(p_n(f, E_n) \) fails to converge uniformly on \([-1, 1]\).

Proof. Assume for the moment that \(p_n \) is linear for each \(n \). Let \(f \in H_n \). Then if \(m > n \), \(p_m(f) = f \) since \(p_n \) maps \(C \) onto \(H_n \) and \(p_m p_n = p_n \). By the Weierstrass approximation theorem the polynomials are dense in \(C \), hence we may infer from the principle of uniform boundedness [3, Theorem II.3.6] that \(p_n(f) \to f \) for each \(f \in C \) iff \(\sup_n \| p_n \| < \infty \), where \(\| p_n \| = \sup_{x \in E_1} \| p_n(f) \| \). But by [5, Hilfssatz 3, p. 495] if \(p_n \) is any bounded projection of \(C \) onto \(H_n \), \(\| p_n \| \leq \ln(n-1)/8\pi^{1/2} \).

Now \(p_n \) is clearly linear if \(E_n \) contains exactly \(n \) points. If \(E_n \) contains \(n+1 \) points \(x_i, -1 \leq x_1 < x_2 < \cdots < x_{n+1} \leq 1 \), let \(q_{n+1}(x) = \sum_{k=0}^{n} a_k x^k \) and \(r_{n+1}(x) = \sum_{k=0}^{n} b_k x^k \) be the unique polynomials determined by the conditions \(q_{n+1}(x_i) = (-1)^i, r_{n+1}(x_i) = f(x_i), i = 1, 2, \ldots, n + 1 \). It is easily seen by considering the determinants involved that \(a_n \neq 0 \). Therefore, let \(p_n(x) = r_{n+1}(x) - (b_n/a_n) q_{n+1}(x) \). The mapping \(f \to p_n \) is clearly linear, since \(f \to r_{n+1} \) and \(f \to b_n \) are both linear. But \(f(x_i) - p_n(x_i) = (b_n/a_n)(-1)^i, i = 1, 2, \ldots, n + 1 \). Therefore, \(p_n = p_n(f, E_n) \) by the classical result of de la Vallée Poussin [2] which completes the proof.

We note two facts. First, it may be easily verified that if \(E_n \) contains more than \(n+1 \) points, \(p_n \) is never linear. Secondly, if \(q_n(f, E_n) \) denotes the polynomial of best approximation to \(f \) on \(E_n \) in the sense of least squares, then the same argument as above shows that if \(\{ E_n \} \) is any sequence of finite subsets of \([-1, 1]\) containing at least \(n \) points, then for some \(f \in C \), \(q_n(f, E_n) \) fails to converge uniformly to \(f \). This follows since the mapping \(f \to q_n(f, E_n) \) is always linear and idempotent.

III. We now prove the convergence criterion.

Theorem 2. For each \(n > 0 \) let \(E_n \) be a finite subset of \([-1, 1]\). Then \(\| f - p_n(f, E_n) \| \to 0 \) for each \(f \in C \) iff there exists a constant \(K \) such that if \(p \in H_n \), \(\| p \| \leq 1, x \in E_n \), then \(\| p \| < K \).

Proof. This is a theorem of uniform boundedness type, and although the operators \(p_n \) are nonlinear the proof resembles that for the linear case.

With no loss in generality, we assume each \(E_n \) contains at least \(n+1 \) points. For fixed \(E_n \) and \(p \in H_n \) let \(\delta(p) = \sup_{x \in E_n} |f(x) - p(x)| \). Then by a well-known result of de la Vallée Poussin [2] \(p_n = p_n(f, E_n) \) is characterized uniquely by the condition that there exist \(n+1 \) points \(x_i \) in \(E_n \), \(x_i \leq x_{i+1} \), for which either
From this it follows easily that the operator P_n is homogeneous, and if q is a polynomial of degree $< n$, then for each $f \in C$, $P_n(f+q) = P_n(f)+P_n(q) = P_n(f) + q$. Moreover E_n satisfies the condition of the theorem iff $\sup_n \| P_n \| < \infty$. For, by the above remarks, if $p \in H_n$ and $|p(x)| \leq 1$, $x \in E_n$, then $p = P_n(f, E_n)$ for some f, $\| f \| \leq 2$. Conversely, if $\| f \| \leq 1$, then $|p_n(x)| \leq 2$ for $x \in E_n$ for otherwise $p(x) = 0$ would provide a better approximation on E_n. Therefore, suppose $\sup_n \| P_n \| = K < \infty$. For each $\varepsilon > 0$ choose a polynomial q such that $\| f - q \| < \varepsilon$. If n_0 is the degree of q and $n > n_0$, then

$$\| f - P_n(f) \| \leq \| f - q \| + \| q - P_n(f) \| \leq \varepsilon(1 + K).$$

Therefore, $\| f - P_n(f) \| \to 0$ and the condition is sufficient.

Conversely, suppose $\| f - P_n(f) \| \to 0$ for each $f \in C$. Since each P_n is continuous, $S_{n,k} = \{ f \in C : \| P_n(f) \| \leq k \}$ is a closed subset of C. Therefore, by the Baire category theorem, for some $k > 0$, $S_k = \cap_{n=1}^{\infty} S_{n,k}$ contains an open set. Consequently, there exists a polynomial $g(x)$ and a positive number δ such that if $\| f \| < \delta$, then $f + g \in S_k$. Hence, for $n > \deg q$ and $\| f \| < \delta$,

$$\| P_n(f) \| \leq \| P_n(q) \| + \| P_n(f - q) \| \leq \| q \| + k.$$

Using this and the continuity of each P_n it follows that

$$\sup_n \| P_n(f) \| < \infty, \quad \| f \| < \delta,$$

and the theorem is proved.

Bibliography