A DECOMPOSITION THEOREM FOR
n-DIMENSIONAL MANIFOLDS

P. H. DOYLE AND J. G. HOCKING

Throughout our discussion an \(n \)-dimensional manifold will mean a connected, separable metric space in which each point has an open \(n \)-cell neighborhood. Our main result can be stated in the following manner.

Theorem 1. Let \(M^n \) be an \(n \)-dimensional manifold. Then \(M^n = P^n \cup C \), where \(P^n \) is homeomorphic to euclidean \(n \)-space, \(E^n \), and \(C \) is a closed subset of \(M^n \) of dimension at most \(n-1 \); and \(P^n \cap C = \emptyset \).

Considered from one point of view Theorem 1 is a generalization of Corollary 1 in [3]. From still another the result says that any \(n \)-manifold is "almost triangulable." The proof of Theorem 1 leads to more interesting results in the case of compact manifolds which we shall consider presently.

The steps in the proof will be described here. If \(C^n \) is a closed \(n \)-cell in \(M^n \) such that \(\text{Bd} C^n \), the boundary of \(C^n \), is bicollared in \(M^n \), [2], and if \(\{ a_i \} \) is a countable dense subset of \(M^n \setminus C^n \), consider the set \(C^n \cup \bigcup_i a_i \). Does this set lie on the interior of an \(n \)-cell in \(M^n \) with a bicollared boundary? If this were the case and if \(C_i \) is such an \(n \)-cell, one could ask if \(C_i \cup a_i \) lies interior to an \(n \)-cell in \(M^n \) with a bicollared boundary. Continuing in this way with sets of the form \(C_i \cup a_{i+1} \), if such enclosure is always possible, we obtain an increasing sequence \(\{ C_i \} \) of closed \(n \)-cells in \(M^n \), \(\text{Bd} C_i \) is bicollared in \(M^n \) and \(\text{int} C_{i+1} \supseteq C_i \), where interior \(C_{i+1} \) is written \(\text{int} C_{i+1} \). Next we observe that \(P^n = \bigcup_i C_i \) is \(E^n \) by either a direct construction of cells with annuli between them or by applying the main result of [1]. Then \(M^n - P^n = C \) is nowhere dense in \(M^n \) and closed since \(P^n \) is open. The sets \(P^n \) and \(C \) would then meet the requirements of Theorem 1.

From this outline it is clear that the proof of Theorem 1 follows immediately from a lemma.

Lemma 1. Let \(M^n \) be an \(n \)-manifold and \(D^n \) a closed \(n \)-cell in \(M^n \) with bicollared boundary. Then if \(p \) is any point in \(M^n \), \(D^n \cup p \) lies in \(\text{int} D_i^n \), where \(D_i^n \) is a closed \(n \)-cell and \(\text{Bd} D_i^n \) is bicollared.

Proof. Let \(q \) be any point in \(\text{int} D^n \). There is a homeomorphism \(h \) of \(M^n \) onto \(M^n \) which is pointwise fixed outside any neighborhood \(V \) of \(D^n \) and which carries \(D^n \) into any preassigned neighborhood \(\mathcal{U} \) of \(q \).

Received by the editors May 11, 1961.
while $h(q) = q$. This follows from the fact that $\text{Bd} \, D^n$ is bicollared.

Since M^n is a manifold, the set $p \cup q$ lies interior to an n-cell in M^n and so interior to an n-cell with a bicollared boundary in M^n. Evidently we need only select u in the interior of such a cell to obtain the proof of Lemma 1.

With the proof of Lemma 1 we obtain Theorem 1. In the case M^n is compact the conditions on C are stronger.

Theorem 2. Let M^n be a compact n-dimensional manifold. Then $M^n = P^n \cup C$, where P^n is homeomorphic to E^n, and C is a nonseparating continuum in M^n; $P^n \cap C = \emptyset$.

It is convenient to call the decomposition $P^n \cup C$ of M^n in the above theorem as a standard decomposition if P^n is obtained as in the proof of Theorem 1.

Corollary 1. Let M^n be a compact n-manifold and $M^n = P^n \cup C$ a standard decomposition of M^n. Then if there is a homeomorphism h of M^n onto M^n such that $h(C) \subset P^n$, then M^n is an n-sphere.

Proof. By Theorem 2, C is compact and so $h(C)$ lies in the interior of a closed n-cell C' in P^n. By the construction of P^n, M^n is the union of two closed n-cells with no boundary points in common. Whence, as in Lemma 3 of [4], one can conclude that M^n is a sphere.

Corollary 2. Let M^n be a compact n-compact n-manifold and let $M^n = P^n_1 \cup C_1 = P^n_2 \cup C_2$ be two standard decompositions. If $C_1 \cap C_2 = \emptyset$, then M^n is a sphere.

It should be pointed out that the set C in a standard decomposition need not be nice. In the case of the 2-sphere S^2, C may be any nonseparating 1-dimensional continuum in S^2; so C need not be locally connected.

Theorem 3. Let M^n be an n-manifold and S^n, the n-sphere. Then there is a map f from M^n onto S^n such that each point of S^n has a degenerate inverse except perhaps for one point p, and $\dim f^{-1}(p) \leq n - 1$.

Proof. The representation of P^n as an increasing sequence of n-cells provides an evident map of the type described with C as the only possible nondegenerate inverse. In case $M^n = E^n$, C may be void; however, one may arrange it so that C is not void even in this case.

In the proof of Corollary 1 to Theorem 2 we observed that a compact n-manifold which fails to be a sphere cannot be the union of two closed n-cells having no boundary points in common. Similar results
may be obtained for open regions. If M^n is a compact n-manifold, $P^n \cup C = M^n$, a standard decomposition, let C be in an open set U in M^n such that U is homeomorphic to a subset of E^n. Then if h is an imbedding of U in E^n we note that $h(C)$ is the limit in E^n of a strictly decreasing sequence of closed n-cells with bicollared boundaries in $h(U) \subset E^n$. Whence, we obtain M^n as a union of closed n-cells with disjoint bicollared boundaries and so M^n is an n-sphere. We can then assert another theorem.

Theorem 4. If M^n is a compact n-manifold which is not an n-sphere and if $M^n = P^n \cup C$ is a standard decomposition, then C has no neighborhood in M^n which can be imbedded in E^n.

References

Michigan State University