TRANSLATION-INVARIANT FUNCTIONALS

MEYER JERISON AND WALTER RUDIN

1. Introduction. Suppose \(X \) is a translation-invariant linear subspace of \(C_0(R) \) (the space of all continuous functions on the real line \(R \) that vanish at infinity) that is dense in \(C_0(R) \) with respect to the uniform topology. If \(\mu \) is a measure on the line such that

\[
\int_{-\infty}^{\infty} f(x + t) d\mu(x) = \int_{-\infty}^{\infty} f(x) d\mu(x)
\]

for all \(f \in X \) and all \(t \in R \), does it follow that \(\mu \) is a constant multiple of the Lebesgue measure?

Our interest in this question arose in the following context. Let \(\Gamma \) be the dual group of a locally compact abelian group \(G \) (written additively), and let \((x, \gamma)\) be the value of the character \(\gamma \in \Gamma \) at the point \(x \in G \). If \(f \in L^1(G) \), its Fourier transform is defined by

\[
\hat{f}(\gamma) = \int_G f(x)(-x, \gamma) dx \quad (\gamma \in \Gamma),
\]

where \(dx \) denotes the Haar measure of \(G \). The inversion formula

\[
f(x) = \int_\Gamma \hat{f}(\gamma)(x, \gamma) d\gamma \quad (x \in G),
\]

where \(d\gamma \) denotes the (suitably normalized) Haar measure of \(\Gamma \), is valid for all \(f \in \mathcal{P}^1 \), the space of all linear combinations of positive definite functions in \(L^1(G) \). In two standard texts \([1, p. 143; 2, p. 413]\), (3) is proved by first showing that there is a positive measure \(\mu \) on \(\Gamma \) such that

\[
f(x) = \int_\Gamma \hat{f}(\gamma)(x, \gamma) d\mu(\gamma)
\]

and

\[
\int_\Gamma \hat{f}(\gamma) d\mu(\gamma) = \int_\Gamma \hat{f}(\gamma + \gamma') d\mu(\gamma)
\]

for all \(\gamma' \in \Gamma \) and for all \(\hat{f} \in \mathcal{P}^1 \) (the set of all Fourier transforms of

\[\text{1 This research was supported by National Science Foundation grants G-7430 and G-14362.}\]
members of P^1. Since P^1 is dense in $C_0(\Gamma)$, it is concluded from (5) that μ is a Haar measure on Γ, and then (4) establishes (3).

In Theorem 1 below we show that the correctness of the italicized statement in the preceding sentence stems from the fact that P^1 is an algebra (under pointwise multiplication). This point is glossed over in both [1] and [2], and the reader is left with the erroneous impression that the only measures μ on Γ that satisfy (5) for a dense subset of functions in $C_0(\Gamma)$ are the Haar measures. We are thus led to the following question, to which we have obtained partial answers:

Suppose X is a translation-invariant subspace of $C_0(G)$, μ is a measure on G, and μ acts invariantly on X, i.e.,

$$\int_G f(x + t) d\mu(x) = \int_G f(x) d\mu(x) \quad (f \in X, t \in G).$$

What information does this give about μ, and what information does it give about the translation-invariant functional T_μ defined on X by

$$T_\mu(f) = \int_G f(x) d\mu(x).$$

By a measure we always mean a complex, countably additive, regular set function defined on the Borel sets of G which is finite for all sets with compact closure. The space of all $f \in C_0(G)$ with compact support will be denoted by $C_c(G)$.

2. Uniqueness theorems.

Theorem 1. Suppose A is a dense translation-invariant subalgebra of $C_0(G)$, μ is a measure on G, and $\int |f| d|\mu| < \infty$ for all $f \in A$. If μ acts invariantly on A, then μ is a constant (complex) multiple of the Haar measure of G.

Proof. Choose $g \in C_c(G)$. Since A is dense in $C_0(G)$, A contains a function h which vanishes at no point of the support of g. Let $k = g/h$; then $k \in C_c(G)$, and so there is a sequence $\{f_n\}$ in A that converges to k uniformly on G. Since $\int |h| d|\mu| < \infty$, Lebesgue’s dominated convergence theorem shows that

$$\lim_{n \to \infty} \int_G f_n(x + t) h(x + t) d\mu(x) = \int_G g(x + t) d\mu(x)$$

for every $t \in G$. Since $f_n h \in A$, the left side of (8) is independent of t. The same is therefore true of the right side, and we have shown that

*We are grateful to Mr. J. A. Smoller for raising the question of how to deduce from (5) that μ is a Haar measure.
\(\mu \) acts invariantly on \(C_c(G) \).

Since every measure on \(G \) is determined by its action on \(C_c(G) \), the uniqueness theorem for Haar measure\(^3\) completes the proof.

Theorem 2. Suppose \(\mu \) is a measure on \(G \) that acts invariantly on a translation-invariant linear subspace \(X \) of \(C_0(G) \), such that \(\int |f| d|\mu| < \infty \) and \(\int |f| dx < \infty \) for all \(f \in X \). If
\[
(9) \quad \hat{\mu}(0) \neq 0
\]
for some \(g \in X \), then there exists a constant \(\lambda \) such that
\[
(10) \quad \int \hat{\mu}(x) \, dx = \lambda \int \hat{\mu}(x) \, dx \quad (f \in X).
\]

Proof. For any \(f \in X \), we have
\[
\hat{\mu}(0) \int \hat{\mu}(x) \, dx = \int \hat{\mu}(0) \int \hat{\mu}(x) \, dx + \int \hat{\mu}(x) \, dx
\]
\[
= \int \hat{\mu}(0) \int \hat{\mu}(x) \, dx
\]
by the invariant action of \(\mu \) on \(X \) and by Fubini's theorem. Since \(\int \hat{\mu}(x) \, dx = (1 + e^x) dx \) is symmetric in \(f \) and \(g \), and so
\[
(12) \quad \hat{\mu}(0) \int \hat{\mu}(x) = \hat{\mu}(0) \int \hat{\mu}(x).
\]
This is (10), with \(\lambda = [\hat{\mu}(0)]^{-1} \int g d\mu \).

Remarks. (a) This proof is patterned after a simple uniqueness proof for Haar measure on abelian groups [1, p. 116].

(b) We did not assume that \(X \) is dense in \(C_0(G) \). (Cf. Theorem 3, however.)

(c) The conclusion of the theorem amounts to the statement that the functional \(T_\mu \) defined on \(X \) by (7) is also given by integration with respect to a Haar measure. That is to say, \(\mu \) acts on \(X \) like a Haar measure. *This does not imply, however, that \(\mu \) is itself translation-invariant.*

For example, let \(X \) be the set of all \(f \in C_c(R) \) such that \(\int e^{-x} f(x) e^x \, dx = 0 \), and take \(\mu(x) = (1 + e^x) \, dx \). The space \(X \) is translation-invariant, \(\mu \) acts invariantly on \(X \), and Theorem 3 below shows that \(X \) is even dense in \(C_0(R) \).

\(^3\) Uniqueness of translation-invariant measures, which is customarily stated only for positive measures, is valid for complex measures as well. For abelian groups this follows, for example, from Theorem 2 below, with \(X = C_c(G) \).
(d) If condition (9) is omitted from Theorem 2, the conclusion is no longer valid, even if X is dense in $C_0(G)$ and if μ is a positive measure. To see this, let X be the linear space generated by all translates of even functions $f \in C_c(R)$ for which $f(0) = 0$, and take $d\mu(x) = x^2 dx$. Note that

$$\int_{-\infty}^{\infty} f(x + t)x^2 dx = \int_{-\infty}^{\infty} f(x)(x^2 - 2tx + t^2) dx.$$

If f is even, then $\int f(x)x dx = 0$. Since $\int f(x)dx = f(0) = 0$ for all $f \in X$, μ acts invariantly on X. But if $f(0) = 2, f(3) = -1, f(6) = 0$, f is linear between these points, $f(x) = 0$ for $x > 6$, and f is even, then $f \in X$ but $\int_{-\infty}^{\infty} x^2 f(x) dx < 0$. Thus $\int f d\mu$ is not a constant multiple of $f(0)$.

3. Subspaces of $C_0(R)$. In this section, we confine our attention to the group R of real numbers. We show, first, that translation-invariant subspaces of $C_0(R)$ are usually dense.

Theorem 3. If a subspace X of $C_0(R)$ contains all translates of some nonzero function f with compact support, then X is dense in $C_0(R)$.

Proof. Suppose μ is a bounded measure on R that annihilates X; then

$$\int_{-\infty}^{\infty} f(x - t)d\mu(x) = 0 \quad (t \in R).$$

If F is the Fourier transform of \hat{f}, where $\hat{f}(x) = f(-x)$, (13) implies that $F \cdot \hat{\mu} = 0$. But F is an analytic function, hence has only isolated zeros, and since $\hat{\mu}$ is continuous, we conclude that $\hat{\mu} = 0$. By the uniqueness theorem for Fourier-Stieltjes transforms, $\mu = 0$, and so X is dense in $C_0(R)$, by the Hahn-Banach theorem.

Remark. We did not really need to assume that $f \in C_c(R)$. All we needed was that the zeros of \hat{f} should form a nowhere dense set.

The examples following Theorem 2 show that a measure that acts invariantly on a translation-invariant subspace X of $C_c(R)$ need not be a constant multiple of Lebesgue measure. We have already remarked, however, that a translation-invariant functional (7) on X is necessarily a multiple of the Lebesgue integral in case some member of X has a nonzero integral. In the next theorem, we recapture the uniqueness property of translation-invariant functionals on X even when every member of X has zero integral. The proof is similar to that of Theorem 2.

Theorem 4. Suppose μ is a measure on R that acts invariantly on a translation-invariant linear subspace X of $C_c(R)$. Let p be the smallest nonnegative integer such that
\(\int_{-\infty}^{\infty} x^p g(x) \, dx \neq 0 \)

for some \(g \in X \). Then there is a constant \(\lambda \) such that

\(\int_{-\infty}^{\infty} f(x) \, d\mu(x) = \lambda \int_{-\infty}^{\infty} x^p f(x) \, dx \quad (f \in X). \)

Note that the right side of (15) is a constant times the \(p \)th derivative of \(\tilde{f} \) at the origin.

Proof. The case \(p = 0 \) is dealt with in Theorem 2.

Suppose \(p > 0 \), \(f \in X \), \(f \neq 0 \), and the support of \(f \) is contained in the interval \([-A, A]\). Let \(f_0 = f \), and for \(k \geq 1 \), let \(f_k(x) = \int_{-A}^{x} f_{k-1}(t) \, dt \).

By induction, one obtains the well-known formula

\(f_k(x) = \frac{1}{(k-1)!} \int_{-A}^{x} (x-t)^{k-1} f(t) \, dt \quad (k = 1, 2, \ldots). \)

We have chosen \(p \) so that

\(\int_{-A}^{A} f_{k-1}(t) \, dt = f_k(A) = \frac{1}{(k-1)!} \int_{-A}^{A} (A-t)^{k-1} f(t) \, dt = 0 \)

for \(1 \leq k \leq p \). Thus, \(f_0, f_1, \ldots, f_p \) all have compact support.

Furthermore,

\(f_p(0) = \int_{-\infty}^{\infty} f_p(t) \, dt = f_{p+1}(A) = \frac{1}{p!} \int_{-\infty}^{\infty} (A-t)^{p+1} f(t) \, dt \)

\(= \frac{(-1)^p}{p!} \int_{-\infty}^{\infty} p f(t) \, dt. \)

Hence, if \(g \) is a function in \(X \) that satisfies (14), then \(g_p(0) \neq 0 \).

Now, as in the proof of Theorem 2, for any \(f \in X \),

\(g_p(0) \int_{-\infty}^{\infty} f(x) \, d\mu(x) = \int_{-\infty}^{\infty} d\mu(x) \int_{-\infty}^{\infty} g_p(t) f(x-t) \, dt. \)

Integration by parts \(p \) times yields

\(\int_{-\infty}^{\infty} g_p(t) f(x-t) \, dt = \int_{-\infty}^{\infty} g(t) f_p(x-t) \, dt = \int_{-\infty}^{\infty} f_p(t) g(x-t) \, dt, \)

and comparison of (19) and (20) shows that

\(g_p(0) \int_{-\infty}^{\infty} f(x) \, d\mu(x) = f_p(0) \int_{-\infty}^{\infty} g(x) \, d\mu(x). \)
With g fixed so that $g_p(0) \neq 0$, (21) together with (18) yields (15) and completes the proof.

By virtue of Theorem 4 every measure that acts invariantly on a translation-invariant subspace X of $C_e(R)$ differs from a measure $\lambda x^\nu dx$, for suitable λ and ν, by a measure that vanishes on all of X. The theorem also furnishes some nonzero measures that vanish on X, namely, the measures $x^k dx$ for $0 \leq k < p$. Moreover, it provides a clue for finding still other such measures.

For every $f \in X$, the Fourier transform \hat{f} of f can be extended to an entire function in the complex plane. Associate with each complex number α a nonnegative integer $m(\alpha)$, the largest integer k such that $\hat{f}(\alpha) (z - \alpha)^{-k}$ is regular at $z = \alpha$ for all $f \in X$, and let E be the set of all α for which $m(\alpha) > 0$. If $X \neq \{0\}$, it is clear that E has no limit point in the finite plane. An equivalent definition of $m(\alpha)$ is that

$$\int_{-\infty}^{\infty} x^k e^{-i\alpha x} f(x) dx = 0$$

for $0 \leq k < m(\alpha)$ and all $f \in X$; whereas

$$\int_{-\infty}^{\infty} x^{m(\alpha)} e^{-i\alpha x} g(x) dx \neq 0$$

for some $g \in X$. If now $\alpha \in E$ and

$$d\mu(x) = (c_0 + c_1 x + \cdots + c_k x^k) e^{-i\alpha x} dx \quad (k < m(\alpha)),$$

then (22) implies that

$$\int_{-\infty}^{\infty} f(x) d\mu(x) = 0$$

for all $f \in X$.

To sum up, any finite linear combination of measures (24) and the measure $x^{m(0)} dx$ acts invariantly on X, and so do certain infinite sums. For instance, if $\alpha_1, \alpha_2, \alpha_3, \cdots$ are points of E and if $\{c_j\}$ tends to 0 rapidly enough, the series

$$s(x) = \sum_{j=1}^{\infty} c_j e^{-i\alpha_j x}$$

converges uniformly on compact subsets of R, and the measure $d\mu(x) = s(x) dx$ acts invariantly on X.

Both examples which follow Theorem 2 are of this sort. It is noteworthy that the complex zeros of the Fourier transforms play a role here.
We conclude with an example of a space $X \subset C_c(R)$ (a dense subspace of $C_0(R)$, by Theorem 3) which contains a nontrivial nonnegative function and on which a positive measure (not a Haar measure) acts invariantly: X consists of all $f \in C_c(R)$ with $f(1) = f(-1) = 0$, and $d\mu(x) = (2 + \sin x)dx$. Since $2i \sin x = e^{ix} - e^{-ix}$, $\int_X f(x) \sin x \, dx = 0$ for all $f \in X$, and so μ acts invariantly on X; also, X contains the nonnegative triangular function f defined by

$$f(x) = \max (2\pi - |x|, 0) \quad (-\infty < x < \infty).$$

REFERENCES

Purdue University and University of Wisconsin

BARRELLED SPACES AND THE OPEN MAPPING THEOREM

TAQDIR HUSAIN AND MARK MAHOWALD

1. Introduction. If E and F are any two topological vector spaces then the following statement may or may not be true:

(A) If f is any linear and continuous mapping of E onto F then f is open.

It is well known [1] that (A) is true when E and F are Fréchet spaces. An extension due to Pták [6], and Robertson and Robertson [7] is that (A) is true if E is B-complete and F is barrelled (t-space). We ask here whether these results characterize Fréchet and B-complete spaces respectively. More precisely, let \mathcal{F} and \mathcal{J} denote the classes of all Fréchet and barrelled spaces respectively. We ask if a topological vector space E, having the property that (A) is true whenever $F \in \mathcal{J}$, is necessarily a Fréchet (B-complete) space.

A well-known example of an LF-space and a theorem of Dieudonné and Schwartz [5, Theorem 1] supplies a counterexample to the above for \mathcal{F}. Here, we give an example showing that the other case is also false.

Presented to the Society, January 26, 1961, under the title $B(\mathcal{E})$-property and the open mapping theorem; received by the editors February 22, 1961 and, in revised form, April 21, 1961.

1 This work was sponsored by the Office of Ordnance Research, U. S. Army.