NOTE ON A THEOREM OF NEHARI

R. M. MORONEY

In a recent paper [1] Nehari investigated the oscillation of solutions $y(x)$ of

$$y'' + yF(y^2, x) = 0$$

under the following conditions on the function $F(t, x)$:

(2a) $F(t, x)$ is continuous in (t, x) on $\{(t, x) : 0 \leq t < \infty, 0 < x < \infty\}$.

(2b) $F(t, x) > 0$ for $t > 0$, $x > 0$.

(2c) For fixed positive x and some $\epsilon > 0$

$$t_2^{-1}F(t_2, x) > t_1^{-1}F(t_1, x) \quad (0 \leq t_1 < t_2 < \infty).$$

In the course of this investigation the question arose whether a C^2 solution of (1), with F subject to (2), is uniquely determined by the conditions

(C) $y(a) = y'(a) = 0$, $y(x) > 0$ for $x \in (a, b]$.

Nehari conjectured that this solution is unique under an additional condition on the behavior of $F(t, x)$ as a function of x. The purpose of this note is to show that such is the case if $F(t, x)$ satisfies the following condition:

(2d) For each fixed positive ρ and $0 \leq x_1 < x_2 < \infty$, $F(\rho, x_2) \geq F(\rho, x_1)$.

We formulate this as a theorem:

Theorem. In (1), let $F(t, x)$ satisfy hypotheses (2a) to (2d). Then for each pair (a, b), $0 \leq a < b < \infty$, there exists a unique solution $y(x)$ of (1) on $[a, b]$ satisfying (C) and having two continuous derivatives on $[a, b]$.

Lemma 1. Let $y_1(x)$ and $y_2(x)$ be two C^2 solutions of (1) on some interval $[a, c)$ such that

(a) $y_1(a) = y_2(a) = 0$, $y'_1(a) = y'_2(a) > 0$.

(b) $y'_1(x) > 0$ and $y''_1(x) > 0$ for $x \in (a, c)$.

Then $y_1(x) = y_2(x)$ on $a \leq x < c$.

Proof. Suppose $y_2(x) > y_1(x)$ for some \hat{x} in (a, c). Then by the mean-value theorem there exists x_2 in (a, \hat{x}) such that $y_2'(x_2) > y_1'(x_2)$ and by a second application an x_3 in (a, x_2) such that $y_2''(x_3) > y_1''(x_3)$. Because of (2b) and the form of (1), however, this implies $y_2(x_3) < y_1(x_3)$.

Received by the editors April 6, 1961.

407
By repeating the foregoing argument one sees that if \(y_2(x) \) and \(y_1(x) \) differ at any point of \((a, c)\) a situation as in Figure 1 must arise, that is there will exist an \(x \) interval \([t_1, t_2] \subseteq (a, c)\) such that \(y_1(t_i) = y_2(t_i) \), \(y_2(x) > y_1(x) \) on \(t_1 < x < t_2 \), and \(y_2'(t_i) > y_1'(t_i) \), \(y_2'(t_2) < y_1'(t_2) \). We now show that this is impossible.

By the continuity of \((y_2 - y_1)'\) as a function of \(y \), there will exist \(t_3 \) and \(t_4 \) such that \(y_2(t_3) = y_1(t_4) = r \), \(y_2'(t_4) = y_1'(t_4) = z \), \(t_3 < t_4 \) (see Figure 2).

By (1), however, on \(t_1 \leq x \leq t_2 \)

\[
\begin{align*}
(3) \quad y_2(x) &= y_2(t_i) + (x - t_i) y_2'(x) + \int_{t_1}^{x} (s - t_i) y_2(s) F(y_2(s), s) \, ds, \\
(4) \quad y_1(x) &= y_1(t_i) + (x - t_i) y_1'(x) + \int_{t_1}^{x} (s - t_i) y_1(s) F(y_1(s), s) \, ds,
\end{align*}
\]

as is easily seen by differentiating. Using (3) at \(t_3 \) and (4) at \(t_4 \) and subtracting gives

\[
\begin{align*}
0 &= (t_3 - t_4) z + \int_{t_1}^{t_3} (s - t_1) y_2(s) F(y_2(s), s) \, ds \\
&\quad - \int_{t_1}^{t_4} (s - t_1) y_1(s) F(y_1(s), s) \, ds.
\end{align*}
\]
In the first integral make the change of variable $\lambda = y_2(x)$, and in the second $\lambda = y_1(x)$:

$$0 = (t_3 - t_4)z + \int_p^r (s_2 - t_3)(\lambda) \lambda \lambda \lambda \lambda \lambda F(\lambda^2, s_2(\lambda))d\lambda$$

$$- \int_p^r (s_1 - t_1)(\lambda) \lambda \lambda \lambda \lambda \lambda F(\lambda^2, s_1(\lambda))d\lambda.$$

Since for each λ in $[p, r]$ $(s_1 - t_1)(\lambda) \geq (s_2 - t_1)(\lambda)$ and $y_1'(\lambda) \leq y_2'(\lambda)$, while by hypothesis (2d) $F(\lambda^2, s_1(\lambda)) \leq F(\lambda^2, s_1(\lambda))$, the difference between the integrals in (6) is negative. So is the first term, however, so the right side can not be zero.

Lemma 2. Let $y_2(x)$ and $y_1(x)$ be solutions of (1) on $[a, b]$ such that

$$(i=1, 2)$$

$$y_i \in C^2[a, b]$$

$$y_i(a) = y_i'(b) = 0$$

$$y_i(x) > 0 \quad \text{for } x \in (a, b].$$

Then $y_2'(a) = y_1'(a)$.

Proof. Suppose $y_2'(a) > y_1'(a)$, and consider the function $(y_2y_1' - y_1y_2')(x)$. We have

$$(y_2y_1' - y_1y_2')(x) = y_2y_1[F(y_2, x) - F(y_1, x)]$$
so

(7) \((y_2y_2' - y_1y_1')(x) = \int_a^x y_2(s)y_1(s)[F(y_2(s), s) - F(y_1(s), s)]ds.\)

By hypothesis \((y_2y_2' - y_1y_1')(b) = 0\). The integrand in (7) is positive, however, as long as \(y_2(s) > y_1(s)\) and in particular on some interval \((a, b)\)—because \((y_2 - y_1)'(a) > 0\). In fact, \(\alpha\) may be taken as \(b\) because the same argument as in Lemma 1 shows that the graphs of \(y_2(x)\) and \(y_1(x)\) can not intersect on \((a, b)\). Thus the right side of (7) does not tend to zero as \(x \to b^+\).

Proof of the theorem. The existence of at least one solution of (1)+(C) has been proved by Nehari [1, Theorem IV]. By the preceding lemmas there is at most one such solution.

Reference

Massachusetts Institute of Technology

ON THE MEASURABILITY OF FUNCTIONS IN TWO VARIABLES

MARK MAHOWALD

Let \((X, \mu)\) and \((Y, \nu)\) be two compact spaces having regular Borel measures defined on them. By a measurable modification \(f(x, y)\) of a function \(f(x, y)\) we mean a function measurable in both variables together and for which \(f(x-) = f(x-) \) almost everywhere \([\nu]\) for every \(x\).

The purpose of this note is to prove the following theorem.

Theorem. If \(Y\) is metric and if \(f(x, y)\) has a measurable modification and \(f(x-)\) is continuous for almost all \(x\), then \(f(x, y)\) is measurable in both variables together.

This theorem was discovered in an effort to prove that the Nelson canonical version [2] is measurable if it has a measurable modification. The theorem would prove this result except for the restriction that \(Y\) be metric.

Received by the editors December 30, 1960 and, in revised form, April 14, 1960.

1 Research supported by the United States Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-265. Reproduction in whole or part is permitted for any purpose of the United States Government.