AXIOMS THAT DEFINE SEMI-METRIC, MOORE, AND METRIC SPACES

J. R. BOYD

In [1] L. F. McAuley asked the following question: is it possible to partition Moore’s metrization theorem into three or more parts which begins with a condition for a topological space and which ends with a condition for a metrizable space, but with necessary and sufficient conditions somewhere between these extremes for semi-metric and Moore spaces? Axiom Z, stated below, is such a partitioning. The notation “Axiom Z_i” denotes parts (1), (2), • • • , (i) of Axiom Z. In §1 it is proved in Theorems 1, 2, and 3, respectively, that a necessary and sufficient condition for a topological space to be semi-metrizable, a Moore space, and metrizable is that it satisfy Axiom Z_2, Axiom Z_3, and Axiom Z_4 respectively. A counter-example is given in §2 which shows that the argument for the statement a Moore space is a semi-metric topological space in Theorem 6.2 in [1] is not correct. Finally, in §3 it is shown that part (3) of Theorem 2 in [2] can be changed so that the resulting statement is equivalent to a Moore space. Definitions are given in [1].

Definition. If \{J_n\} denotes a sequence such that for each natural number n, J_n denotes a collection of neighborhoods covering a point set M, then the sequence \{B_i\}, where i denotes a natural number, is said to be a basic refinement of \{J_n\} for M provided that with each point p in M there is associated a sequence \{b_i(p)\} such that for each i: (1) b_i(p) is a neighborhood in \{J_n\}, (2) b_{i+1}(p) is a subset of b_i(p), (3) p is the only point common to \{b_i(p)\}, and (4) B_i denotes the collection of all neighborhoods b_i(p) for all points in M.

1. Axiom Z.

Axiom Z. Let T denote a topological space in which there exists a sequence \{J_n\} such that:

(1) for each natural number n, J_n denotes a collection of neighborhoods in T covering T,

(2) there exists a basic refinement \{B_n\} of \{J_n\} for T such that if M denotes a point set and p denotes a point, then either (a) every neighborhood containing p contains a point in (M — p) or (b) there exists an n such that if x denotes a point in (M — p), b_n(p) does not contain x and b_n(x) does not contain p,

(3) if R denotes a neighborhood containing p and x is in R, then there

Presented to the Society, December 6, 1960; received by the editors January 13, 1961 and, in revised form, April 4, 1961.

482
exists an n such that if g denotes a neighborhood in J_n that contains p, then g is a subset of R not containing x unless x is p, and

(4) if R contains p and x is different from p, then there exists an n such that if each of h and k denotes a neighborhood in J_n, k contains p, and h and k have a common part, then h is a subset of R not containing x.

Parts (1) and (4) are Moore’s metrization theorem and parts (1) and (3) are parts (1) and (3) of Moore’s Axiom 13.

Theorem 1. A necessary and sufficient condition for a topological space T to be semi-metrizable is that T satisfy Axiom Z2.

Proof of necessity. It follows from the definition of a semi-metric topological space that for each point p in T, there exists a sequence $\{b_n(p)\}$ such that for each n, (1) $b_n(p)$ denotes a neighborhood containing p, (2) $b_n(p)$ is a subset of the $1/n$-neighborhood of p, and (3) $b_{n+1}(p)$ is a subset of $b_n(p)$. Now, for each n, let B_n denote the collection of all the neighborhoods $b_n(p)$ for the various points in T. Finally, for natural numbers i and m let J_n denote the collection of all the elements in B_i for all $i \geq m$. It is not difficult to verify that Axiom Z2 is satisfied by the sequences $\{J_n\}$ and $\{B_n\}$.

Proof of sufficiency. For each pair of points p and x in T, let n denote the smallest i such that $b_i(x)$ does not contain p and $b_i(p)$ does not contain x where $b_i(x)$ and $b_i(p)$ belong to B_i. Now let $d(p, x) = d(x, p) = 1/n$. Define $d(p, p) = 0$. It follows that d is a semi-metric for T and that the sufficiency of the condition is established.

Theorem 2. A necessary and sufficient condition for a topological space T to be a Moore space is that T satisfy Axiom Z3.

Proof of necessity. Let $\{G_n\}$ denote the sequence of collections of neighborhoods given in Moore’s Axiom 13. Since a Moore space is a semi-metric space [1], define the sequences $\{B_n\}$ and $\{J_n\}$ in a manner analogous to that in the proof of the necessity of Theorem 1 with the additional restriction that each member of J_n be a subset of an element of G_n, i.e., J_n refines G_n for each n. It follows that the sequences $\{J_n\}$ and $\{B_n\}$ satisfy Axiom Z3.

Proof of sufficiency. Given that T satisfies Axiom Z3, let G_n denote the collection of all elements B_i for all $i \geq n$. It follows that the sequence $\{G_n\}$ satisfies Moore’s Axiom 13.

Theorem 3. A necessary and sufficient condition for a topological space T to be metrizable is that T satisfy Axiom Z4.

2. A correction. The following counter-example shows that the argument for the statement a Moore space is a semi-metric topological space in [1, Theorem 6.2] is not correct.

Let the points of space be the points of the plane on or above the
x-axis. Neighborhoods are of two types—interiors of circles above the
x-axis and interiors of circles tangent to the x-axis from above to-
gether with the point of tangency. Let G_i denote the collection of all
these neighborhoods whose diameters are less than $1/i$.

McAuley defined the distance between two points p and q as fol-
lows: denote by n the least positive integer such that if $g(p)$ and $g(q)$ de-
note two neighborhoods in G_i containing the points p and q respec-
tively, then $g(p) \cdot g(q) = 0$. Define $d(p, q) = 1/n$. By this definition, a point on
the x-axis is a distance limit point of the x-axis but is not a limit point
of the x-axis.

It is not difficult to show that the following definition of distance
is sufficient to show that a Moore space is a semi-metric topological
space. Let n denote the least natural number i such that if $g(p)$ and $g(q)$
are two neighborhoods in G_i containing p and q respectively, then $g(p)$
does not contain q and $g(q)$ does not contain p. Define $d(p, q) = 1/n$.

3. **Axiom A.** R. L. Moore’s Axiom 13 is stated in terms of a sequence
of collections of regions covering space. The following axiom is stated
in terms of a point and a sequence of regions containing the point.
The axiom is the same as Theorem 2 in [2] except for part (3).

Axiom A. If p denotes a point, there exists a sequence \{${R_n(p)}$\} where
for each natural number n, $R_n(p)$ denotes a region containing p such
that:

1. p is the only point common to \{${R_n(p)}$\},
2. for each n, $R_{n+1}(p)$ is a subset of $R_n(p)$,
3. if R denotes a region containing p, then there exists an n such that
if z denotes any point and $R_n(z)$ contains p, $R_n(z)$ is a subset of R.

Theorem 4. In the presence of Moore’s Axiom 0, Axiom 13 is equiv-
lent to Axiom A.

Proof. That Axiom 13 implies Axiom A is established by obtaining
the sequence \{${R_n(p)}$\} as in the proof of Theorem 2 in [2] and show-
ing that part (3) of Axiom A follows from part (3) of Axiom 13. To
show that Axiom A implies Axiom 13, let G_n, for each n, denote the
collection of all regions $R_i(p)$ for all natural numbers $i \geq n$ for all
points p. It is easy to verify that the sequence \{${G_n}$\} satisfies Axiom 13.

References

1. **L. F. McAuley**, *A relation between perfect separability, completeness, and normal-

Arlington State College