DIRECT DECOMPOSITIONS OF LATTICES OF CONTINUOUS FUNCTIONS

ROBERT L. BLAIR AND CLAUDE W. BURRILL

If X is a topological space and if K is a chain equipped with its order topology, then we denote by $C(X, K)$ the lattice of all continuous functions from X to K. If X is the union of two disjoint open-and-closed subsets X_1 and X_2, then it is clear that $C(X, K)$ is isomorphic to the direct product of the lattices $C(X_1, K)$ and $C(X_2, K)$. In Theorem 2 of [2], Kaplansky proves the following converse:

Theorem A (Kaplansky). If X is compact, if K has neither a first nor a last element, and if $C(X, K)$ is isomorphic to the direct product of two lattices L_1 and L_2, then X is the union of disjoint open-and-closed subsets X_1 and X_2 having the property that L_i is isomorphic to $C(X_i, K)$ ($i = 1, 2$).

A technique for removing the stated hypothesis on K is outlined in §6 of [2]. The validity of Theorem A for noncompact spaces, however, is left as an open question in [2]. In this note we shall remove from Theorem A both the hypothesis on K and the compactness hypothesis on X. At the same time, we shall show that a direct decomposition of merely a sublattice of $C(X, K)$ (satisfying a very mild condition) is enough to ensure a corresponding decomposition of X (Theorem B below). The sublattices that we find adequate for this purpose are described as follows (cf. the concluding remark of this note):

Definition. A sublattice L of $C(X, K)$ will be called adequate in case for each $x \in X$ there exist functions $f, g \in L$ such that $f(x) < g(x)$.

For example, if L is a sublattice of $C(X, K)$ that contains at least two distinct constant functions, then obviously L is adequate.

By a prime ideal of a lattice L we mean a nonempty proper subset P of L such that (i) if $a, b \in P$, then $a \vee b \in P$ and (ii) $a \wedge b \in P$ if and only if $a \in P$ or $b \in P$; a dual prime ideal is the complement of a prime ideal (see e.g. [1]). We require the following readily verified fact (cf.

Received by the editors July 13, 1961.

1 If K is the chain R of real numbers, then (as observed in [2, p. 621]) a reduction to the compact case is possible via the Stone-Čech compactification (of a suitable completely regular space). One should note, however, that this device yields Theorem A (for X arbitrary) with $C(X, K)$ and $C(X_1, K)$ replaced, respectively, by the lattices $C^*(X, R)$ and $C^*(X_1, R)$ of bounded real-valued continuous functions on X and X_1.

2 Our proof is a modification of Kaplansky's original argument. No separation properties are required of X.

631
If L_1 and L_2 are lattices and if P is a prime ideal of the direct product $L_1 \times L_2$, then either $P = P_1 \times L_2$ for some prime ideal P_1 of L_1 or $P = L_1 \times P_2$ for some prime ideal P_2 of L_2.

If Y is a subset of X and if $f \in C(X, K)$, then $f\mid Y$ denotes the restriction of f to Y. If L is a sublattice of $C(X, K)$, then we set

$L_Y = \{ f\mid Y : f \in L \}$.

It is clear that L_Y is a sublattice of $C(Y, K)$.

We can now state the following result:

Theorem B. Let X be a topological space, let K be a chain equipped with its order topology, and let L be an adequate sublattice of $C(X, K)$. If L is isomorphic to the direct product of two lattices L_1 and L_2, then X is the union of disjoint open-and-closed subsets X_1 and X_2 having the property that L_i is isomorphic to L_{X_i} (i = 1, 2). (The isomorphisms involved are described explicitly below.) Moreover, X_1 is nonempty if and only if L_i has at least two distinct elements.

Proof. If $x \in X$ and $f \in L$, we set

$P_x(f) = \{ g \in L : g(x) \leq f(x) \}$

and

$P^*(f) = \{ g \in L : g(x) \geq f(x) \}$.

It is clear that $P_x(f)$ (resp. $P^*(f)$) is a prime (resp. dual prime) ideal of L provided only that it is a proper subset of L. The adequacy of L then ensures that, in any event, either $P_x(f)$ is a prime ideal of L or $P^*(f)$ is a dual prime ideal of L.

We choose now an isomorphism δ from L onto $L_1 \times L_2$ and a fixed element $\delta \in L$. Denote by \emptyset_1 (resp. \emptyset_2) the collection of all prime ideals P of L such that $\delta(P)$ is of the form $P_1 \times L_2$ (resp. $L_1 \times P_2$), with P_i a prime ideal of L_i. For $i = 1, 2$, denote by X_i the set of all points $x \in X$ such that either $P_x(k) \in \emptyset_i$ or $L - P^*(k) \in \emptyset_i$. Then it is easily seen that X_1 and X_2 are disjoint and that $X = X_1 \cup X_2$. Moreover, if y is in the closure of X_i, then

$\cap \{ P_x(k) : x \in X_i \} \subseteq P_y(k)$

and

$\cap \{ P^*(k) : x \in X_i \} \subseteq P^*(k)$,

from which it follows that $y \in X_i$. Thus both X_1 and X_2 are open-and-closed.

Now let π_i be the projection of $L_1 \times L_2$ onto L_i, and consider the
mapping \(\phi_i = \pi_i \circ \delta \) from \(L \) onto \(L_i \). Let \(f, g \in L \) and suppose that \(\phi_i(f) \leq \phi_i(g) \) but that \(f(x) > g(x) \) for some \(x \in X_1 \). Then \(P_a(g) \) is a prime ideal of \(L \) that contains \(g \) but not \(f \). If \(P_a(k) \neq L \), then, since \(P_a(g) \cap P_a(k) \) contains a prime ideal of \(L \) (namely, \(P_a(g \wedge k) \)), \(P_a(g) \) must map onto \(P_a \times L_2 \) for some prime ideal \(P_1 \) of \(L_1 \). But then \(\phi_i(f) \in P_1 \) so that \(f \in P_a(g) \), a contradiction. Moreover, if \(P_a(k) \neq L \), then a dual argument again yields a contradiction. Arguing similarly for \(X_2 \), we therefore conclude that

\[
(1) \quad \phi_i(f) \leq \phi_i(g) \text{ implies } f \upharpoonright X_i \leq g \upharpoonright X_i \quad (i = 1, 2).
\]

Now suppose, on the other hand, that \(f \upharpoonright X_1 \leq g \upharpoonright X_1 \) but that \(\phi_i(f) \nleq \phi_i(g) \). Since \(L_i \) is distributive, Zorn’s lemma provides a prime ideal \(P_1 \) in \(L_1 \) that contains \(\phi_i(g) \) but not \(\phi_i(f) \). Let \(P \) be the prime ideal in \(L \) that maps onto \(P_1 \times L_2 \). Then \(g \in P \) and \(f \notin P \). Let \(h = \delta^{-1}(\phi_i(f), \phi_i(g)) \) so that \(h \in P \). Now \(\phi_i(h) = \phi_i(g) \) and therefore, by (1), \(h \upharpoonright X_2 = g \upharpoonright X_2 \). But then \(f \upharpoonright h \leq g \) so that \(f \wedge h \in P \), a contradiction. Using a similar argument for \(\phi_2 \), we thus obtain

\[
(2) \quad f \upharpoonright X_i \leq g \upharpoonright X_i \text{ implies } \phi_i(f) \leq \phi_i(g) \quad (i = 1, 2).
\]

We conclude from (2) that \(\psi_i : f \upharpoonright X_i \mapsto \phi_i(f) \) is a well-defined order-preserving map from \(L_{X_i} \) onto \(L_i \). Moreover, by (1), \(\psi_i \) is one-to-one and \(\psi_i^{-1} \) is also order-preserving. Hence \(\psi_i \) is an isomorphism.

Using the adequacy of \(L \), note finally that \(X_i \) is nonempty if and only if \(L_{X_i} \) has at least two distinct elements. Since \(L_i \) is isomorphic to \(L_{X_i} \), the last assertion of the theorem is immediate, and the proof is complete.

Remark 1. Let \(\delta \) and \(\pi_i \) be as above and let \(\lambda_i \) be an arbitrary isomorphism from \(L_i \) into \(L_i \times L_2 \) such that \(\pi_i \circ \lambda_i \) is the identity on \(L_i \). Let \(\rho_i \) be the restriction homomorphism \(f \mapsto f \upharpoonright X_i \) from \(L \) onto \(L_{X_i} \). The proof of Theorem B shows that \(\rho_i \circ \delta^{-1} \circ \lambda_i \) is an isomorphism from \(L_i \) onto \(L_{X_i} \) and that, for each \(f \in L \),

\[
(\rho_i \circ \delta^{-1} \circ \lambda_i)(\pi_i(\delta(f))) = \rho_i(f) \quad (i = 1, 2).
\]

Remark 2. If \(P_a(k) \) is always a prime ideal of \(L \) (and this is the case, for example, if \(K \) has no last element and if \(L \) contains every constant function on \(X \) to \(K \)), then the proof of Theorem B admits the following simplification: Ignoring \(P_a(k) \), we can take \(X_i \) to be the set of all \(x \in X \) such that \(P_a(k) \in \mathfrak{P}_i \) (cf. the proof of Theorem 2 of [2]).

In the following corollary, \(C*(X, K) \) denotes the sublattice of \(C(X, K) \) consisting of all bounded continuous functions from \(X \) to \(K \).

Corollary. Let \(X \) and \(K \) be as before. If \(C(X, K) \) (resp. \(C*(X, K) \)) is isomorphic to the direct product of two lattices \(L_1 \) and \(L_2 \), then \(X \) is the
union of disjoint open-and-closed subsets X_1 and X_2 having the property that L_i is isomorphic to $C(X_i, K)$ (resp. $C^*(X_i, K)$) ($i = 1, 2$).

Proof. If K consists of a single element, we can take $X_1 = X$ and $X_2 = \emptyset$; the result is then a consequence of the fact that $C(\emptyset, K) = \{ \emptyset \}$. If K has at least two elements, then both $C(X, K)$ and $C^*(X, K)$ are adequate, and the result follows immediately from the theorem.

Remark 3. The following question remains open: What are necessary and sufficient conditions on a sublattice L of $C(X, K)$ in order that a direct decomposition of L be reflected in a corresponding decomposition of X? In any case, the hypothesis of adequacy cannot simply be deleted. To see this, let R be the chain of real numbers, let $i: R \to R$ be the identity mapping, and let L be the (nonadequate) sublattice of $C(R, R)$ generated by i and $-i$. If K is any chain with exactly two elements, then L is isomorphic to $K \times K$, but there is no corresponding decomposition of R.

References

Purdue University and
New York University