ON COMPLETE BERGMAN METRICS

SHOSHICHI KOBAYASHI

1. In [3] we gave a sufficient condition for the Bergman metric to be complete. We shall give here a slightly modified condition for the completeness. To state our result more explicitly, we shall recall definitions given in [3].

2. Let M be an n-dimensional complex manifold, F the Hilbert space of holomorphic n-forms f on M such that

$$(n-1)^2 \int_M f \wedge \bar{f} < \infty.$$

Let h_0, h_1, h_2, \cdots be an orthonormal basis for F. The kernel form K of Bergman is defined by

$$K = \sum h_i \wedge \bar{h}_i.$$

(Strictly speaking, one should put $(-1)^{n+1}$ in front of \sum; but this is not essential in the following discussion.)

Suppose F is ample in the following sense:

(A.1). For every z in M, there exists an f in F which does not vanish at z.

(A.2). For every holomorphic vector Z at z, there exists an f in F such that f vanishes at z and $Z(f^*) \neq 0$, where $f = f^* dz_1 \wedge \cdots \wedge dz_n$ with respect to a local coordinate system z_1, \cdots, z_n of M.

If F satisfies the conditions (A.1) and (A.2), then the Bergman metric ds^2 is defined by

$$ds^2 = \sum \frac{\partial^2 \log K^*}{\partial z^a \partial \bar{z}^b} dz^a d\bar{z}^b$$

where $K = K^* dz_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n$;

If M is a bounded domain in \mathbb{C}^n, then F is ample and the Bergman metric is defined; this is of course the case originally considered by Bergman [1].

3. Consider now the following additional condition

(C). For every infinite sequence S of points of M which has no adherent point in M and for every f in F, there exists a subsequence S' of S such that

$$\lim_{s' \to s} (f \wedge \bar{f})/K = 0.$$

Received by the editors June 7, 1961.

1 This work has been supported by N.S.F. Grant 10375.

511
Then we know that

(i). A complex manifold \(M \) satisfying (C) is complete with respect to the Bergman metric [3]. (I conjecture that the converse is true.)

(ii). A bounded domain in \(C^n \) which is complete with respect to the Bergman metric is a domain of holomorphy. The converse is not true [2].

(iii). Every domain of holomorphy can be approximated by an increasing sequence of analytic polyhedrons.

(iv). Every bounded analytic polyhedron in \(C^n \) satisfies (C) [3].

The above four statements show that the three concepts "holomorph-convexity," "metric completeness" and "(C)" are closely related to each other. Concerning (ii), it is not known whether a complex manifold which is complete with respect to the Bergman metric is necessarily holomorph-convex. It is also unknown whether (C) implies the holomorph-convexity for a manifold. For the proof of (ii), Bremermann makes use of the ambient space \(C^n \) which is not available in the case of an abstract complex manifold. Let \(M \) be a bounded domain of holomorphy in \(C^n \) and let \(A(M) \) be the intersection of all the domains of holomorphy \(G \) containing the closure of \(M \). According to Sommer-Mehring [4], the assumption \(A(M) = M \) implies that the kernel function can not be continued outside \(M \). It is very likely that \(A(M) = M \) implies the completeness with respect to the Bergman metric.

4. We shall now consider the following condition

\((C') \). Let \(F' \) be a (fixed) dense subset of the Hilbert space \(F \). For every infinite sequence \(S \) of points of \(M \) which has no adherent point in \(M \) and for every \(f \) in \(F' \), there exists a subsequence \(S' \) of \(S \) such that

\[
\lim_{S'} (f \wedge \bar{f})/K = 0.
\]

We shall prove

Theorem. If a complex manifold \(M \) with Bergman metric satisfies \((C') \) (for some dense subset \(F' \) of \(F \), then \(M \) is complete with respect to the Bergman metric.

The proof is a slight modification of the argument in our previous paper [3, p. 284] and we shall use the same notations as in [3]. Let \(H \) be the dual space of \(F \) and \(P(H) \) the projective space of complex 1-dimensional subspaces of \(H \); the dimension of \(P(H) \) is possibly infinite. In [3, see pp. 280–282]], we defined a natural Kaehler metric \(d\sigma^2 \) on \(P(H) \) and proved the metric completeness of \(P(H) \). The natural imbedding \(j: M \to P(H) \) defined in [3] is isometric in the sense of differential geometry, i.e., \(j^*(d\sigma^2) = ds^2 \). The distance between two
points of M (resp. $P(H)$) is the greatest lower bound of the lengths of the piecewise differentiable curves joining them in M (resp. $P(H)$). It follows that, for every pair of points z and z' of M, the distance between $j(z)$ and $j(z')$ with respect to da^2 does not exceed the one between z and z' with respect to ds^2. Assuming that M is not complete, let S be a Cauchy sequence in M which has no limit point in M. Then $j(S)$ is a Cauchy sequence in $P(H)$. By the completeness of $P(H)$, $j(S)$ has a limit point, say x_0, in $P(H)$. By a proper choice of basis in H, we may assume that x_0 is represented by a point $\xi_0 = (1, 0, 0, \cdots)$ of H. Take the dual basis h_0, h_1, h_2, \cdots in F. Let f be an element of F'. Then

$$f = \sum_{j=0}^{\infty} a_j h_j, \quad a_j \in \mathbb{C}.$$

For any z in M, $j(z)$ is represented by the point of the unit sphere in H whose homogeneous coordinates are given by

$$(h_0(z) \wedge \bar{h}_0(z)/K(z, \bar{z}), \quad h_1(z) \wedge \bar{h}_1(z)/K(z, \bar{z}), \quad h_2(z) \wedge \bar{h}_2(z)/K(z, \bar{z}), \cdots).$$

Hence, $\lim_{S'} (f \wedge \bar{f})/K = |a_0|^2$. Let S' be any subsequence of S. Since $j(S')$ and $j(S)$ have the same limit point,

$$\lim_{S'} (f \wedge \bar{f})/K = |a_0|^2.$$

In order that the condition (C') holds, a_0 must be zero. That would imply that F' is orthogonal to h_0, contradicting the assumption that F' is dense in F. Q.E.D.

Corollary. Let M be a bounded domain in \mathbb{C}^n. If the polynomials are dense in F and if the Bergman's kernel function goes to infinity at every boundary point of M, then M is complete with respect to the Bergman metric.

Bibliography