If $[A]$ is the matrix $2\pi [a]^{-1}$ the analogue of (3) is

$$D\Phi(0, 0) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(A_{11}m + A_{12}n + x, A_{21}m + A_{22}n + y),$$

and (5) follows in the same way as (1).

References

Northwestern University

REPRESENTATIONS OF BANACH SPACES

G. S. YOUNG

Banach and Mazur proved that every separable Banach space B can be represented as the space $C(M)$ of continuous real functions on a compact metric space M. Since M is the continuous image of the Cantor set K, $C(M)$ can be imbedded in $C(K)$, and since functions in $C(K)$ can be extended preserving norm to functions over I, they conclude that B can be represented as a subspace of $C(I)$.

If B is not separable, it can be represented as $C(H)$, where H is compact Hausdorff. A compact Hausdorff space is the continuous image of some totally disconnected compact Hausdorff space T—for example, give the space the discrete topology, and let T be its Stone-Čech compactification. It follows that B is isomorphic to a subspace of $C(T)$. If T could be given a linear order inducing the same topology, we could fill in the missing intervals and obtain a compact con-

Received by the editors May 20, 1961.

1 The work on this note was supported by the National Science Foundation.

2 S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
nected ordered space S, and so represent B as a subspace of $C(S)$.
I cannot have been the only one who observed this, and failed in ordering T.

Mardešić and Papić have proved the unexpected and elegant result that if ΠX_a is a product of two or more nondegenerate continua, and there is a continuous map of a compact ordered continuum onto ΠX_a, then each X_a is metric. From this it follows, e.g., that if L is the "long interval," obtained by inserting open intervals between consecutive points of the set of ordinals not greater than the first uncountable ordinal, then $L \times I^1$ is not the continuous image of any compact ordered space, T.

For suppose that there is a map $f: T \rightarrow L \times I^1$, onto. Let a_1, a_2 be two points of T with no point between them. Let $f(a_j) = (l_j, t_j)$, $j = 1, 2$, and suppose $l_1 \leq l_2$ in L. The set L contains an "interval" l_1l_2, possibly a point, and in I^1 there is an interval t_1t_2, also possibly a point. The set $X = l_1l_2 \times t_1 \cup l_2l_1$ is a continuum ordered by separation. Between a_1 and a_2 insert a copy X_{12} of $X - f(a_1) - f(a_2)$ so that the natural map of $a_1 \cup X_{12} \cup a_2$ onto X is a homeomorphism. Having done this for each pair a_1, a_2, we obtain a compact connected ordered space T^*. We define $f^*: T^* \rightarrow L \times I^1$ to agree with f on T and to be the natural map on each set X_{12}. It is easily seen that f^* is continuous. But the Mardešić-Papić result then implies that L is metric, a contradiction. There are obvious generalizations. A corollary is that there exist compact totally disconnected Hausdorff spaces that cannot be ordered.

The algebra of $C(L \times I^1)$ must be quite different from that of $C(I^1 \times I^1)$. It would be interesting to see how this property manifests itself algebraically.

The Tulane University of Louisiana
