ROOTS OF SCALAR OPERATORS

J. G. STAMPFLI

Introduction. The existence of normal roots of normal operators is a well-known consequence of the spectral theorem. Very simple examples show however that normal operators may have roots which are not normal (in fact the identity operator has non-normal roots). In this paper we will show that the invertible scalar operators on a Banach space possess only scalar operators as roots.

Preliminaries. The term operator will be used to mean a bounded linear transformation of a Banach space into itself. By a spectral measure on a Banach space \mathfrak{X}, we mean a family of bounded operators $E(\cdot)$ defined on all Borel sets σ of the plane, with the following properties.

(i) $E(\emptyset) = 0$, $E(\text{plane}) = I$, where I is the identity.
(ii) For all σ_1, σ_2, $E(\sigma_1 \cap \sigma_2) = E(\sigma_1) \cdot E(\sigma_2)$ and for disjoint σ_1, σ_2

$E(\sigma_1 \cup \sigma_2) = E(\sigma_1) + E(\sigma_2)$.

(iii) There exists a constant M such that

$\|E(\sigma)\| \leq M$

for all σ.

(iv) For $x \in \mathfrak{X}$ and $\{\sigma_n\}$ a sequence of disjoint Borel sets,

$E\left(\bigcup_{n=1}^{\infty} \sigma_n \right) x = \sum_{n=1}^{\infty} E(\sigma_n)x$.

If an operator S admits a representation $S = \int \! dE(\sigma)$ where $E(\cdot)$ is a spectral measure then S is a scalar operator. T is a spectral operator if $T = S + N$ where S is a scalar operator, N is a quasi-nilpotent operator and S commutes with N.

I. Lemma 1. If $T^n = I, n$ a positive integer, I the identity on the Banach space \mathfrak{X}, then T is a scalar operator, of the form $T = \sum_{i=1}^{n} w_i E_i$ where $E_i E_j = \delta_{ij} E_i$, $i, j = 1, \ldots, n$ and $\sum_{i=1}^{n} E_i = I$.

Proof. By Dunford's spectral mapping theorem the spectrum of T can consist of at most the nth roots of unity. Then the resolvent $(T - zI)^{-1}$ is holomorphic in the rest of the plane, so by [3, p. 179], we have

$(1) \quad T = \sum_{i=1}^{n} N_i + \sum_{i=1}^{n} w_i E_i$

where the N_is are quasi-nilpotent operators, the E_is are idempotent.

Received by the editors March 11, 1961 and, in revised form, August 23, 1961.
operators and the w_is are the nth roots of unity. Also
\[E_iE_j = 0, \quad i \neq j; \quad E_iN_i = N_iE_i = N_i; \quad E_iN_j = N_jE_i = 0, \quad i \neq j; \]
\[E_iT = TE_i \quad \text{and} \quad \sum_{i=1}^{n} E_i = I. \]

Now we will show all N_is are zero. Multiplying (1) by E_i we obtain
\[TE_i = (N_i + w_i I)E_i. \]
Raising this to the nth power we have $E_i = \sum_{l=0}^{n} \binom{n}{l} w^{n-l} N_i^l E_i$ or
\[0 = \sum_{l=1}^{n} \binom{n}{l} w^{n-l} N_i^l E_i. \]

Now for any element of the form $y = E_i x$ we have $\sum_{l=1}^{n} \binom{n}{l} w^{n-l} N_i^l y = 0$. This implies that $N_i^l y$ is linearly dependent on $\{y, N_i y, \ldots, N_i^{n-1} y\}$ and hence the linear subspace M, generated by this set is invariant under N_i. Since N_i is quasi-nilpotent on \mathfrak{A}, $N_i^l|_M$ is nilpotent. Assume that $N_i^l|_M \neq 0$. Then there exists $u \in M$, $u = E_i v$ such that $N_i u \neq 0$, $N_i^2 u = 0$ because $N_i^l|_M$ is nilpotent. But then from (2) we have $N_i u = 0$ contrary to hypothesis. Hence $N_i = 0$ on M and since y was chosen arbitrarily from $E_i \mathfrak{A}$, we have $N_i E_i = 0$. Thus $N_i = N_i \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} N_i E_i = 0$. We may now write $T = \sum_{i=1}^{n} w_i E_i$ and from this conclude that T is a scalar operator.

Lemma 2. Let A and B be commuting scalar operators on a Banach space \mathfrak{A} where
\[B = \sum_{i=1}^{k} a_i E_i \quad \text{and} \quad E_i E_j = 0, \quad i \neq j; \quad E_i^2 = E_i; \quad \sum_{i=1}^{k} E_i = I; \]
then $A \cdot B$ is a scalar operator.

II. Theorem 1. Let $T^n = S$, where n is a positive integer and S an invertible scalar operator on the Banach space \mathfrak{A}; then T is a scalar operator.

Proof. Since S is scalar, $S = \int z dF(z)$. Let $A = \int z^{1/n} dF(z)$ where $z^{1/n}$ is the principal nth root of z. Now A is a scalar operator and $A^n = S$. Because T commutes with S, T commutes with the spectral measure $F(z)$ and hence T commutes with A (see [1, p. 329]). Let $TA^{-1} = B$, then $B^n = T^n A^{-n} = SS^{-1} = I$. By Lemma 1, B is a scalar operator of the form $B = \sum_{i=1}^{n} w_i E_i$; and since $TA = AT$ we have $T = AB = BA$. We may therefore invoke Lemma 2 to conclude that T is a scalar operator.

Corollary 1. Let $T^n = S$ where n is a positive integer and S is a
scalar operator on the Banach space \mathcal{X} with zero an isolated point of the spectrum of S; then $T = S_1 + N$ where S_1 is scalar, N is nilpotent, S_1 commutes with N and $N^n = 0$. Thus T is a spectral operator.

The proof is obtained by a slight modification in the proof of Theorem 1.

The author would like to express his gratitude to Charles A. McCarthy for pointing out the following:

Theorem 2. If $T^n = S$, n a positive integer, S an invertible spectral operator on a Banach space \mathcal{X} then T is a spectral operator.

Proof. Again the proof is a slight modification of previous methods. Let $S = A + N$, where A is a scalar operator and N a quasi-nilpotent operator which commutes with A. Then $[TA^{-1/n}]^n = S \cdot A^{-1} = (A + N)A^{-1} = I + NA^{-1}$. Now since NA^{-1} is quasi-nilpotent, $\sigma(I + NA^{-1}) = 1$ so $\sigma(TA^{-1/n})$ can consist of at most the nth roots of unity. Now one can show by the argument of Lemma 1 that $TA^{-1/n} = \sum_{i=1}^{n} w_i E_i + Q$ where Q is a quasi-nilpotent operator which commutes with all the idempotents E_i, $i = 1, \cdots, n$. Thus $T = A^{1/n} \sum_{i=1}^{n} w_i E_i + A^{1/n}Q$, where the first term on the right side is a scalar operator and the second is a quasi-nilpotent operator which commutes with it.

Corollary 2. If $T^n = S$, n a positive integer, S a spectral operator on a Banach space \mathcal{X} where zero is an isolated point of the spectrum of S, then T is a spectral operator.

The proof requires only a slight modification of the proof of Theorem 2.

Example. We now exhibit an example to show that Theorems 1 and 2 need not be true for operators which have zero as a limit point of the spectrum. Let $H = L_2[0, 1] \oplus L_2[0, 1]$ with the usual Hilbert space norm. For $[f_1, f_2] \in H$ define $T[f_1(s), f_2(s)] = [tf_1(s) + f_2(s), -sf_2(s)]$. Then elementary but tedious calculations with two X two matrices show that T is neither a scalar nor a spectral operator. However $T^2[f_1(s), f_2(s)] = [s^2f_1(s), s^2f_2(s)]$ so T^2 is clearly a normal, thus a scalar operator.

Bibliography