A CHARACTERIZATION OF CERTAIN
QUASI-OPEN MAPPINGS

ROBERT H. KASRIEL

1. Introduction. In this paper we shall deal with mappings (continuous functions) defined on regions (open and connected) subsets of a plane P with the range of the functions also contained in P. In reference [1], M. K. Fort defined such a mapping f to be minimal provided that for each closed 2-cell N contained in the domain of f, $f(N) \subseteq g(N)$ for every mapping g whose domain contains N and which is such that $f| \text{Fr } N = g| \text{Fr } N$. The following result was obtained in [1].

If f is light, then f is open if and only if f is minimal.

In this paper, we prove the following similar theorem for certain quasi-open mappings.

1.1. Theorem. Let $f: X \to P$ be a compact mapping defined on a simply connected region X in a plane P with $f(X) \subseteq P$. Then f is quasi-open if and only if f is minimal and for no $x \in f(X)$ is it true that $f^{-1}(x)$ separates X.

The sufficiency of the condition in 1.1 is established in §2 and the necessity in §3.

Recall that a mapping $f: X \to P$ is compact provided that for each compact set $K \subseteq f(X)$, $f^{-1}(K)$ is compact. f is quasi-open provided that for any $y \in f(X)$ and any open set U in X containing a compact component of $f^{-1}(y)$, $y \in \text{int } f(U)$. Here and throughout the paper such terms as interior, closed, closure (cl), boundary (Fr) will always be relative to the containing plane.

With $f: X \to P$ a mapping into a plane P, if R is an elementary region (a bounded plane region whose boundary consists of a finite number of simple closed curves) whose closure is in the domain of f and $x \in P - f(\text{Fr } R)$, then there is defined the topological index or winding number $\mu(x, f, R)$. Use will be made of the following well-known properties of the index.

1.2. $\mu(x, f, R)$ is constant on every component of $P - f(\text{Fr } R)$.

1.3. Suppose $x \in P - f(\text{Fr } R)$. If $g: X \to P$ is such that $g(\bar{x}) = f(\bar{x})$ for $\bar{x} \in \text{Fr } (R)$, then $\mu(x, f, R) = \mu(x, g, R)$.

1.4. Let $R_j; j = 1, 2, \ldots, k$ be a sequence of pair-wise disjoint el-
mentary regions in R such that

$$(\text{cl } R) \cdot f^{-1}(x) \subset \bigcup_{i} R_{i}.$$

Then $\mu(x, f, R) = \sum_{i} \mu(x, f, R_{i}).$ (See Theorem 3 on p. 126 in [7].)

1.5. If $\mu(x, f, R) \neq 0$, then $x \in f(R)$.

1.6. If N is a closed 2-cell and f is a homeomorphism on N, then $\mu(x, f, \text{int } N) = \pm 1$ for each $x \in f(\text{int } N)$.

In terms of this index, Fort [1] proved the following.

1.7. With $f : X \rightarrow P$ as before, f is minimal if and only if for each closed 2-cell N, $f(N) = f(\text{Fr } N) + \{ p \mid \mu(p, f, \text{int } N) \neq 0 \}$.

2. **Compact plane mappings.** In this section we make the following assumption.

2.1. $f : X \rightarrow P$ is a compact mapping from a simply connected region in a plane P into P.

From a result of Whyburn (§10 in [4]), there exists a factorization $f = lm$ in which m is monotone and compact and l is light and compact. Throughout the middle space $m(X)$ will be designated as M.

If the further assumption is made that for no $x \in f(X)$ it is true that $f^{-1}(x)$ separates X, it can be shown that no component of $f^{-1}(x)$ separates X. But then for no $z \in M$, it is true that $m^{-1}(z)$ separates X. 2.3 below then follows from the following result of Whyburn. (See Note 1, p. 313 in [5].)

If m is a monotone mapping from a plane X onto a space Y, then Y is a plane if and only if m is compact and $m^{-1}(y)$ does not separate X for each $y \in Y$.

2.3. Let f be as in 2.1 and let $f = lm$ be a factorization as before. In addition assume that for $x \in f(X)$, $f^{-1}(x)$ does not separate X. Then the middle space M is a topological plane.

2.4. Let $f : X \rightarrow P$, l, m, M be as in 2.3. Then if N is a closed 2-cell such that $N \subset M$, $m^{-1}(\text{int } N)$ is a simply connected region.

Proof. $M - \text{int } N$ is connected. Therefore, since m is compact and monotone, $m^{-1}(M - \text{int } N) = X - m^{-1}(\text{int } N)$ is connected. (See 8.3 in [4].) Since m is compact, $m^{-1}(N)$ and thus $\text{cl } (m^{-1}(\text{int } N))$ is compact. Thus $m^{-1}(\text{int } N)$ is a plane region whose closure is compact and whose complement in the plane is connected. Hence $m^{-1}(\text{int } N)$ is simply connected.

2.5. Let $f : X \rightarrow P$ be a compact mapping. Let $x \in f(X)$ and let U be an open set such that $f^{-1}(x) \subset U$. Then there exists an open set $V \subset P$ such that $x \in V$ and $f^{-1}(V) \subset U$.

This follows easily from the compactness of f.

2.6. Let $f : X \rightarrow P$ be a mapping as in 2.3. Furthermore assume that f
is minimal. Then \(f \) is quasi-open.

Proof. Let \(f = lm \) be a factorization as in 2.3. By 2.3 the middle space \(M \) may be taken to be a complex plane. Let \(x \in f(X) \) and suppose \(K \) is a component of \(f^{-1}(x) \). Let \(U \) be an open set in \(X \) such that \(K \subset U \). From the definition of quasi-open, the proof will be complete if we show that \(x \) is an interior point of \(f(U) \). Toward this end, let \(p = m(K) \). Note that \(p \in l^{-1}(x) \). Since \(l^{-1}(x) \) is totally disconnected it can be shown that there exists arbitrarily small 2-cells \(N \) such that \((\text{Fr } N) \cdot l^{-1}(x) = \emptyset \) and \(p \in \text{int } N \). By 2.5, \(N \) may be chosen so that \(m^{-1}(N) \subset U \). Let \(G = m^{-1}(\text{int } N) \). By 2.4, \(G \) is simply connected. Since \(f \) is compact, \(f^{-1}(x) \cdot \text{cl } G \) is compact and since \(f^{-1}(x) \cdot \text{Fr } G = \emptyset \) it follows that \(f^{-1}(x) \cdot G \) is compact. Then since \(G \) is simply connected, there exists a closed 2-cell \(T \) such that \(f^{-1}(x) \cdot G \subset \text{int } T \subset T \subset G \). Further by 1.7 \(\mu(x, f, \text{int } T) \neq 0 \). But then from 1.2 and 1.5, \(f(T) \supset Q_x \) where \(Q_x \) is the component of \(P - f(\text{Fr } T) \) that contains \(x \). Since \(Q_x \) is open and \(x \in Q_x \subset f(T) \subset f(U) \) it follows that \(x \) is an interior point of \(f(U) \).

3. **Compact quasi-open mappings.** In this section we make the following assumption.

3.1. \(f : X \to P \) is a compact and quasi-open mapping defined on a simply connected region \(X \) in the plane \(P \) and \(f(X) \subset P \).

Assuming 3.1, it is known (10.2 and 10.4 in [4]) that there is a monotone-light open factorization \(f = lm \) for which \(m \) is a compact monotone mapping and \(l \) is compact, light, and open relative to \(f(X) \). Further from the definition of quasi-open as given in the introduction, \(f(X) \) is open in \(P \) and hence \(l \) is open relative to \(P \). Furthermore, we have the following.

3.2. For no point \(x \in f(X) \) is it true that \(f^{-1}(x) \) separates \(X \).

Proof. Suppose \(f^{-1}(x) \) separates \(X \). Then there exists a separation \(X - f^{-1}(x) = A + B \).

Since \(f^{-1}(x) \) is compact \(A + f^{-1}(x) \) or \(B + f^{-1}(x) \) is compact. Assume that \(A + f^{-1}(x) \) is compact. Then \(f(A) + x \) is compact. However \(A \) is open and is the union of components of point inverses. Hence from the quasi-openness of \(f \), \(f(A) \) is open. This is a contradiction since then \(x \) would be the boundary of an open set \(f(A) \) in the plane.

On the basis of 3.2 and 2.3 with \(f \) as in 3.1, the middle space \(M \) can be taken to be a plane. Recall that \(f(X) \) is open in \(P \). Thus there is available the following result of Whyburn.

3.3. (See VIII, 1.1 and 1.11 in [3].) There exists an integer \(k \) and a completely scattered set \(D \subset f(X) \), such that for each \(x \in f(X) - D \), \(l^{-1}(x) \) consists of \(k \) distinct points. Furthermore on the set \(M - l^{-1}(D) \), \(l \) is a
local homeomorphism. [Note that for each point $x \in D$, x is an isolated point of D. Also D is closed.]

By making use of 3.3 and 2.4, the following can be obtained.

3.4. For each $z \in f(X) - D$, there exists arbitrarily small closed 2-cells N such that $z \in \text{int } N \subset N \subset f(X) - D$ and such that $f^{-1}($int $N)$ is the union of a finite number of pairwise disjoint open two-cells Q_i for which $f(Q_i) = $int N and $f^{-1}(z*) \cdot Q_i$ consists of a single component of $f^{-1}(z*)$ for each $z* \in $int N.

3.5. $X - f^{-1}(D)$ is a connected open set.

Proof. Notice that $X - f^{-1}(D) = m^{-1}(M - l^{-1}(D))$ is open and furthermore is connected since $M - l^{-1}(D)$ is connected and m is a compact monotone mapping.

3.6. Definition of $\mu(x)$. On the open connected set $S = X - f^{-1}(D)$ define the function μ as follows. Let $x \in S$. Then $f^{-1}f(x)$ consists of exactly k compact components. (See 3.3.) Let K_x be that component that contains x. There exists an elementary region R such that

$$K_x \subset R \subset \text{cl } R \subset X - f^{-1}(D)$$

and

$$f^{-1}(x) \cdot \text{cl } R = K_x.$$

It will be shown in 3.7 that $\mu(x, f, R)$ is independent of the particular choice of R provided that R satisfies (1). On that basis the following may be defined:

$$\mu(x) = \mu(f(x), f, R).$$

(Because of the nature of point inverses of f, μ is a point function version of the function defined in II. 3.4 of [7].)

3.7. $\mu(x, f, R_1) = \mu(x, f, R_2)$ provided that R_1 and R_2 satisfy (1).

Proof. Let Q be the component of $R_1 \cdot R_2$ that contains K_x. There exists an elementary region R such that

$$K_x \subset R \subset \text{cl } R \subset Q \subset R_1 \cdot R_2.$$

From 1.4, $\mu(f(x), f, R_1) = \mu(f(x), f, R_2) = \mu(f(x), f, R_2)$.

Use will be made of the following in investigating the function μ.

3.8. Young's Modification Theorem. (See [6].) Let N be a closed 2-cell with interior G and boundary J. Suppose X is a continuum and $m : X \rightarrow N$ is a monotone mapping of X onto N such that $m^{-1}(G)$ is an open 2-cell. Then there is a mapping $h : X \rightarrow N$ of X onto N such that $h(x) = m(x)$ for $x \in m^{-1}(J)$ and $h^{-1}h(x) = x$ for $x \in m^{-1}(G)$.

3.9. $|\mu(x)| = 1$ for each $x \in X - f^{-1}(D)$.

Proof. Let $x \in X - f^{-1}(D)$. Let R be an elementary region admissible for the computation of $\mu(x)$. (See 3.6.) Let $y = m(x) \in M$. Note that l is a local homeomorphism at y and recall that m is compact.
Hence by 2.5 there exists a closed 2-cell neighborhood \(N \) of \(y \) such that \(m^{-1}(N) \subset R \) and such that \(I \) is a homeomorphism on \(N \). Let \(G = m^{-1}(\text{int } N) \). By 2.4 \(G \) is an open 2-cell. Thus 3.8 can be applied to \(m \mid m^{-1}(N) \) and using this a modification \(h : X \to M \) of \(m \) can be defined such that \(h(z) = m(z) \) for \(z \in X - G \) and \(h \) is one-to-one on \(G \). Let \(z^* \) be the unique point in \(G \) such that \(h(z^*) = y \). Note also \(h^{-1}(y) \cdot R = z^* \). Let \(W \) be a closed 2-cell such that \(z^* \in \text{int } W \subset \text{int } G \). Note that \(\partial h \mid W \) is a homeomorphism. Then by 1.6 and from the fact that \(\partial h(z^*) = \partial h(y) = f(x) \), it follows that \(\mu(f(x), \partial h, \text{int } W) = \pm 1 \). Further since \(\partial ((\partial h)^{-1}f(x)) \cdot R = z^* \), it follows from 1.4 that \(\mu(f(x), \partial h, \text{int } W) = \mu(f(x), \partial h, R) \). Moreover by 1.3, since \(f = \partial h \mid \text{Fr}(R) \), \(\mu(f(x), f, R) = \mu(f(x), \partial h, R) \). Combining this with the two previous equalities involving \(\mu \) yields \(\mu(f(x), f, R) = \pm 1 \).

3.10. \(\mu \) is continuous on \(X - f^{-1}(D) \). (Hence by 3.5 \(\mu(x) \) is constant on \(X - f^{-1}(D) \).)

Proof. Let \(x \in X - f^{-1}(D) \) and \(K_x \) the component of \(f^{-1}(x) \) that contains \(x \). Choose \(R \) as in (1) of 3.6 so that \(\mu(x) = \mu(f(x), f, R) \). Choose a closed 2-cell \(N \) such that \(f(x) \in \text{int } N \subset \text{cl } N \subset f(X) - f(\text{Fr}(R)) \) and is chosen as in 3.4. Let \(Q \) be the component of \(f^{-1}(\text{int } N) \) that contains \(K_x \). Since \(f(Q_i) = \text{int } N \) for each component \(Q_i \) of \(f^{-1}(\text{int } N) \) (see 3.4) and since \(f^{-1}(x) \cdot R = K_x \), it follows that \(Q \) is the only component of \(f^{-1}(\text{int } N) \) that intersects \(R \).

Now let \(y \in Q \). Let \(K_y \) be the component of \(f^{-1}(f(y)) \) that contains \(y \). However from the way in which \(N \) was chosen (see 3.4) \(K_y \) is the only component of \(f^{-1}(f(y)) \) that intersects \(R \). Thus \(R \) is admissible for the computation of \(\mu(y) \) and \(\mu(y) = \mu(f(y), f, R) \). However by 1.2, \(\mu(f(y), f, R) = \mu(f(x), f, R) \) and thus \(\mu(x) = \mu(y) \).

3.11. **Let** \(f : X \to P \) **be as in 3.1. Then** \(f \) **is minimal.**

Proof. Let \(N \) be a closed 2-cell in \(X \). From 1.5 and 1.7 we need show only that \(\mu(x, f, \text{int } N) \neq 0 \) for each \(x \in f(N) - f(\text{Fr } N) \). Let \(x \in f(N) - f(\text{Fr } N) \). Define \(D \) as in 3.3. Let \(U_x \) be the component of \(P - f(\text{Fr } N) \) that contains \(x \). There exists a point \(y \in U_x \cdot [f(\text{int } N) - D] \). This follows from the quasi-openness of \(f \) and the definition of \(D \). By 1.2, \(\mu(y, f, \text{int } N) = \mu(x, f, \text{int } N) \). Let \(K_1, \ldots, K_a \) be the components of \(f^{-1}(y) \) that intersect and hence are contained in \(\text{int } N \). There exist elementary regions \(R_1, R_2, \ldots, R_a \) such \(K_i \subset R_i \subset \text{cl } R_i \subset \text{int } N \) and \(R_i \cdot R_j = \emptyset \) if \(i \neq j \). By 1.4, \(\mu(y, f, \text{int } N) = \sum_i \mu(y, f, R_i) \). Let \(x_i \in K_i \). Thus, from definition of \(\mu \), 3.9, and 3.10 \(| \sum_i \mu(x, f, R_i) | = | \sum_i \mu(x, f, R_i) | = h \) and \(\mu(x, f, \text{int } N) = \mu(y, f, \text{int } N) \neq 0 \).

Theorem 1.1. The validity of the Theorem 1.1 stated in the introduction now follows from 2.6, 3.2 and 3.11.
References

The Georgia Institute of Technology