Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isometric immersions which preserve curvature operators


Author: Barrett O’Neill
Journal: Proc. Amer. Math. Soc. 13 (1962), 759-763
MSC: Primary 53.74
DOI: https://doi.org/10.1090/S0002-9939-1962-0143161-0
MathSciNet review: 0143161
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428-443. MR 0063739 (16:172b)
  • [2] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1951. MR 0044878 (13:491e)
  • [3] S. Chern and R. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306-318. MR 0084811 (18:927a)
  • [4] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920. MR 0126812 (23:A4106)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53.74

Retrieve articles in all journals with MSC: 53.74


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1962-0143161-0
Article copyright: © Copyright 1962 American Mathematical Society

American Mathematical Society