1. Introduction. Let A be a simple, flexible, powerassociative, finite-dimensional algebra over a field of characteristic zero. Then it is known that A has a unity element 1 [5], and consequently A has a degree. When A has degree larger than two, Oehmke has shown [5] that A^+ is a simple Jordan algebra. Kokoris [4] has shown the same result in case A has degree two. In this paper we are able to show that if A has degree one then in fact A must be a one-dimensional algebra. Combining these results, the following theorem may be asserted.

Main Theorem. If A is a simple, flexible, powerassociative, finite-dimensional algebra of characteristic zero then A^+ is a simple Jordan algebra.

2. Proof. We begin with a result that is more general than actually needed to prove the main theorem.

Theorem 1. Let R be a flexible algebra with unity element 1 over a field F of characteristic not two. Suppose there exists some vector space decomposition of R, $R = F1 + N$, such that for all elements a, b in N $a \cdot b = (ab + ba)/2$ is in N. Then the ideal C generated by all elements of the form $(x, y, z) = (x \cdot y) \cdot z - x \cdot (y \cdot z)$ is contained in N and hence is a proper ideal of R.

Proof. For arbitrary elements x_1, x_2, y in N we have $x_1y = \lambda_11 + z_1$, and $x_2y = \lambda_21 + z_2$, where z_1 and z_2 are in N, while λ_1, λ_2 are scalars. As in Schafer [7, Relation (8)] it follows from the flexible law that

$$
(x_1, x_2)y = \lambda_1x_2 + \lambda_2x_1 + x_1 \cdot z_2 + x_2 \cdot z_1 - (x_1 \cdot y) \cdot x_2 - (x_2 \cdot y) \cdot x_1
$$

(1)

$$
+ (x_1 \cdot x_2) \cdot y.
$$

As in Kokoris [3, p. 653] one goes on to show from (1) that

$$
(x_1, x_2, x_3)y = (x_1, x_2, z_2) + (x_1, z_2, x_3) + (z_1, x_2, x_3) - (x_1 \cdot y, x_2, x_3)
$$

(2)

$$
- (x_1, x_2 \cdot y, x_3) + (x_3 \cdot y, x_2, x_1) + (x_1, x_2, x_3) \cdot y,
$$

where (x, y, z) is defined here as $(x, y, z) = (x \cdot y) \cdot z - x \cdot (y \cdot z)$, while $x_3y = \lambda_31 + z_3$, where z_3 is in N and λ_3 is a scalar. Then if B is the subspace generated by all (x, y, z), relation (2) implies that $BN \subset B$.

Received by the editors August 16, 1961.

1 One of the authors was supported in part by a grant from the Office of Ordnance Research.
+B \cdot N, \quad NB \subset B + B \cdot N, \quad \text{and more generally} \quad ((BN) \cdots) N \subset B + B \cdot N + \cdots + ((B \cdot N) \cdots) \cdot N \text{ etc. As a result the set } C, \text{ defined as the set of all finite sums of elements from the sets } B, \quad B \cdot N, \quad (B \cdot N) \cdot N, \quad \text{etc., can be shown to be an ideal of } A. \text{ Since } B \text{ is readily shown to be in } N \text{ and since } N \cdot N \subset N \text{ by hypothesis, we may conclude that } C \subset N. \text{ This concludes the proof of the theorem.}

Corollary. If \(R \) is also assumed to be simple then \(R^+ \) is an associative, commutative algebra.

While the following theorem is not essential to the proof of the Main Theorem, it together with Theorem 1 might be useful in a study of flexible algebras where the elements of \(N \) are not necessarily nilpotent.

Theorem 2. If \(S \) is a flexible ring of characteristic different from two such that \(S^+ \) is power associative, then \(S \) must be power associative.

Proof. From the flexible law third-power associativity follows. Assume inductively \(k \)-power associativity for all \(k < n \). We proceed to establish \(w \)-power associativity. The flexible law implies that

\[
x^{a-1}x = (xx^{a-1})x = x(x^{a-1}) = xx^{a-1}.
\]

By a second induction suppose \(x^{a-2}x^a = x^ax^{a-2} \) for \(0 < a < n - 1 \). We have already established this for \(a = 1 \). The linearized form of the flexible law implies that

\[
(x^{a-1}x)x^a + (x^ax)x^{a-1} = x^{a-1}(xx^a) + x^a(xx^{a-1}).
\]

By the second induction hypothesis the first term on the left cancels the second term on the right in the last equality, leaving

\[
x^{n-(a+1)}x^{a+1} = x^{(a+1)}x^{n-(a+1)}.
\]

This completes the proof of the second induction. Powerassociativity in \(A^+ \) implies

\[
(x^a \cdot x^{n-a-1}) \cdot x = x^a \cdot (x^{n-a-1} \cdot x).
\]

However from this it follows that

\[
2x^{n-1} \cdot x = 2x^{n-1} \cdot x^a,
\]

so that, for all \(a \), \(x^{n-1} \cdot x = x^{n-a} \cdot x^a \), assuming characteristic different from two. This completes the first induction and the proof of the theorem.

We note that in general powerassociativity of \(T^+ \) does not suffice to guarantee powerassociativity of \(T \).
Corollary. If R is simple then R must be powerassociative.

Consider now the case at hand, in which A is assumed to have degree one over an algebraically closed field. Then there exists a vector space decomposition \(A = F1 + N \), where in fact all elements of \(N \) are nilpotent. Albert [2, p. 527] has shown that in \(A^+ \), \(N \) is a subalgebra. From this one infers that \(A \) satisfies the hypotheses of Theorem 1. From the Corollary to Theorem 1 it follows that \(A^+ \) is associative. Hence \(A \) is a noncommutative Jordan algebra. At this point a result of Schafer's [6, Main Theorem] may be used to conclude that \(A \) is trace-admissible. Albert [1, Principal Theorem] has shown that a trace-admissible algebra \(A \) is simple if and only if \(A^+ \) is simple. Thus \(A^+ \) is a simple, associative, commutative, finite-dimensional algebra. Then it is well known that \(A^+ \) must be a field. Therefore \(N \) must be zero. This of course means \(A \) is isomorphic to \(F \). We have proved

Theorem 3. If \(A \) is a simple, flexible, powerassociative, finite-dimensional algebra over an algebraically closed field of characteristic zero and degree one then \(A \) is a one dimensional field.

The existence of nodal, noncommutative Jordan algebras indicates that the conclusion of Theorem 3 is not true for fields of finite characteristics [3].

References

Ohio State University and
Illinois Institute of Technology