NOTES ON THE DIOPHANTINE EQUATION $x^2 + 7y^2 = 2n+2$

S. B. TOWNES

1. Introduction. In [1] the authors define $r = \frac{1}{2}[1 + (-7)^{1/2}]$ and $r^n = \frac{1}{2}[b_{n-1} + a_{n-1}(-7)^{1/2}]$, with $b_n^2 + 7a_n^2 = 2n+2$, $n \geq 1$. They prove that, except for $a_0 = a_1 = 1$, and $a_2 = a_4 = a_{12} = -1$, $|a_n| > 1$. They also prove that no integer appears in the sequence $\{a_n\}$ more than three times. In [2] Miss P. Chowla, using a different notation, proves that in the sequence $\{b_n\}$, except for $b_3 = b_7 = 1$, an integer appears only once if $i + 1$ is a power of 2. She also states, without explicit proof, that no integer appears more than twice in the sequence $\{b_n\}$. In [1] the authors ask for an explicit formula $N(c)$ with the property that for an arbitrary positive integer c, if $n > N(c)$, then $|a_n| \neq c$.

It is convenient to change the notation so that $r^n = \frac{1}{2}[b_n + a_n(-7)^{1/2}]$, $b_{n+1}^2 + 7a_{n+1}^2 = 2n+2$, $n \geq 1$, and $a_1 = b_1 = 1$.

In these notes it will be shown that for $|a_i| > 1$, no two terms of the sequence $\{a_n\}$ are equal, with the exception of $a_4 = a_8 = -3$. The desired formula $N(c)$ will be developed.

2. Proof of the uniqueness of the a_i. One may deduce from the definition of r^n that

$$2a_{(n+1)s} = b_{ns}a_s + b_s a_{ns}$$

and

$$2b_{(n+1)s} = b_{ns}b_s - 7a_{ns}a_s.$$

Lemma 1. For all values of n, a_n and b_n are odd integers with $a_n \equiv b_n \pmod{4}$.

The lemma is true for $a_1 = b_1 = 1$. Assume it is true for arbitrary n. From (1) and (2), with $s = 1$, $2a_{n+1} = b_n + a_n \equiv 2 \pmod{4}$, and $2b_{n+1} = b_n - 7a_n \equiv 2 \pmod{4}$. Furthermore, $b_n + a_n \equiv b_n - 7a_n \pmod{8}$, hence $a_{n+1} \equiv b_{n+1} \pmod{4}$, which proves the lemma.

To get useful expressions for b_{ns} and a_{ns}, expand

$$\left[b_s + a_s(-7)^{1/2}\right]^n = \frac{b_{ns} + a_{ns}(-7)^{1/2}}{2}$$

and get

Received by the editors August 31, 1961 and, in revised form, November 22, 1961.
1 The author thanks the referee for his suggestions, all of which have been incorporated in this paper.
NOTES ON THE DIOPHANTINE EQUATION \(x^3 + 7y^3 = z^2 \)

The Diophantine equation \(x^3 + 7y^3 = z^2 \) is studied with particular emphasis on finding integer solutions.\\

In this context, we define \(A = n(7^{-1/3}a^{n-1}_s) \) if \(n \) is odd, and \((-7)^{n/2}a^n_s \) if \(n \) is even. Also,\\

\[
2^{n-1}a_{ns} = a_s \left[nb^{n-1}_s - \frac{7n(n-1)(n-2)}{3!} b^{n-2}_s a_s + \cdots + B \right],
\]

where \(B = (-7)^{(n-1)/2}a^{n-1}_s \) if \(n \) is odd, and \((-7)^{(n-2)/2}na^{n-2}_s b_s \) if \(n \) is even. Since \(b^2_s + 7a^2_s = 2s^2 + 2 \), one may substitute \(2s^2 - b^2_s \) for \(7a^2_s \) in (3) and (4) and get, for all values of \(n \geq 2 \),\\

\[
b_{ns} = b^2_s - n2s^{n-2} + \frac{n}{2} \binom{n-3}{1} 2s^{n-4} + \cdots + (-1)^{i-1} \frac{n}{i-1} \binom{n-i}{i-2} 2^{(i-1)s} b^{n-2i+2}_s + \cdots,
\]

where \(3 \leq i \leq \frac{1}{2} (n + 2) \), and\\

\[
a_{ns} = a_s \left[b^{n-1}_s - (n - 2)2s^{n-3} + \cdots - (-1)^{i-1} \frac{n}{i-1} \binom{n-i}{i-2} 2^{(i-1)s} b^{n-2i+1}_s + \cdots \right],
\]

where \(2 \leq i \leq \frac{1}{2} (n + 1) \).

One may verify (5) for \(n = 2 \) and \(n = 3 \) by actual computation. Now assume it is true for arbitrary \(n \geq 3 \), and use (1) and (2) to get \(2b_{(n+1)s} \). Replace \(-7a^2_s \), which occurs in \(-7a_n a_s \) in (6), by \(b^2_s - 2s^2 \). The first two terms of \(2b_{(n+1)s} \) are easily computed and agree with (5). The \(i \)th term, which may be seen to use the \((i - 1)\)st term of (6), as well as the \(i \)th terms of (5) and (6), is equal to\\

\[
(-1)^{i-1} \left[4 \binom{n+1-i}{i-2} + \binom{n-i}{i-1} + \frac{n}{i-1} \binom{n-i}{i-2} \right] 2^{(i-1)s} b^{n-2i+3}_s
\]

which, on simplifying, becomes\\

\[
(-1)^{i-1} \frac{2(n+1)}{i-1} \binom{n+i-1}{i-2} 2^{(i-1)s} b^{n-2i+3}_s
\]
and on division by 2, becomes the \(i\)th term of \(b_{(n+1)\ast}\).

In a similar way (6) may be verified by mathematical induction.

Lemma 2. For \(n\) odd and greater than 1, \(b_n \equiv 3 \pmod{8}\).

In the \(i\)th term of (5), the coefficient of \(2^{-(i-1)}b_i^{n-2i+2}\) is easily seen to be an integer, since it is

\[
(-1)^{i-1} \left\{ \binom{n-i+1}{i-1} + \binom{n-i}{i-2} \right\}.
\]

Thus all terms after the third are multiples of 8. Let \(s = 1\), and use (5) to see that \(b_n \equiv 1 - 2n + 2n(n-3) \equiv 1 + 2n^2 \equiv 3 \pmod{8}\), since \(n\) is odd.

From here on, to avoid repetition, let the equation \(x \equiv 1 \pmod{2^r}\) imply that \(x = 1 \pmod{2^{r+1}}\).

Lemma 3. For \(n = 2^r, r \geq 3, b_n \equiv 1 \pmod{2^{r+2}}\).

Since \(b_8 = -3 \equiv 1 \pmod{2^5}\), the lemma is true for \(n = 3\). Assume the lemma true for arbitrary \(r\) with \(n = 2^r, r \geq 3\). Then by (5)

\[
(7) \quad b_{2n} = b_n^2 - 2^{n+1}
\]

and

\[
b_{2n} \equiv b_n^2 \equiv 1 \pmod{2^{r+3}}.
\]

Lemma 4. With \(n\) odd and greater than 1, and \(s = 2^r, r \geq 1, b_n\equiv 1 \pmod{2^{r+2}}\).

For \(s = 2\), use (7) to see that \(b_{2n} \equiv 1 \pmod{2^3}\). For \(s = 4\), use (7) again, with \(n\) replaced by \(2n\) to get \(b_{4n} \equiv 1 \pmod{2^5}\). With \(r \geq 3\), so that \(2^r > r+2\), use (5) to get \(b_{4n} = b_n^4 - 2n^2 + 2n^2 + \cdots \). Since \(b_n \equiv 1 \pmod{2^{r+2}}\), and \(n\) is odd, then \(b_{4n} \equiv b_n^4 \equiv 1 \pmod{2^{r+2}}\).

Lemma 5. Except for \(b_1 = b_3 = 1, |b_n| > 1\).

The values of \(b_1\) and \(b_4\) are easily computed. The remainder of the lemma follows from Lemmas 2, 3, and 4.

Lemma 6. For \(m\) any odd integer, and \(a_r \equiv 0 \pmod{m}\), then \(a_{r+s} \equiv 0 \pmod{m}\) or \(\not\equiv 0 \pmod{m}\) according as \(a_s \equiv 0 \pmod{m}\).

Since \((a_r, b_s) = (a_s, b_r) = 1\), and \(2a_{r+s} = a_rb_s + a_sb_r \equiv a_rb_r \pmod{m}\), the lemma is true.

Lemma 7. If \(t\) is the least value of \(n\) for which \(a_n \equiv 0 \pmod{m}\), \(m\) any odd integer greater than 1, then \(a_u \equiv 0 \pmod{m}\) if and only if \(u\) is a multiple of \(t\).

If \(u\) is a multiple of \(t\), then \(a_u \equiv 0 \pmod{m}\) by (6). To prove the con-
verse let $u = qt + v$, $0 \leq v < t$. Then $2a_u = a_qb_s + a_sqbt \equiv a_qb_t \pmod{m}$. Now $(a_n, b_n) = 1$, and if $0 < v < t$ then $a_n \not\equiv 0 \pmod{m}$. Hence $v = 0$ and the lemma follows.

Lemma 8. For $n = 1$ and for $n = 4$, $a_{2n} = a_n$, but for all other values of n, $|a_{2n}| > |a_n|$.

In general, $a_{2n} = a_nb_n$. But $b_1 = b_4 = 1$, and for all other values of n, by Lemma 5, $|b_n| > 1$.

Lemma 9. For $s > 1$, and $n = 3, 5, 13$, then $|a_{ns}| > |a_s|$.

For $s = 2, 3, 4$, the lemma may be verified by actually computing a_{ns} and a_s in each case. Now assume $s \geq 5$, and by (6)

$$a_{3s} = a_s(b_s - 2^s),$$

$$a_{5s} = a_s(b_s^4 - 3 \cdot 2^s b_s^2 + 2^{2s}),$$

$$a_{13s} = a_s(b_s^{12} - 11 \cdot 2^s b_s^{10} + \cdots).$$

Since the proofs are closely analogous, only the first will be given in detail. In each case, the proof is accomplished by showing the coefficient of a_s is greater than 1 in absolute value by showing it is $\not\equiv 1 \pmod{2^s}$ but $\equiv 1 \pmod{8}$. To prove that $|a_{3s}| > |a_s|$, note that if s is odd then $b_s \equiv 3 \pmod{8}$, and therefore $b_s^2 \equiv 1 \pmod{8}$, but $\not\equiv 1 \pmod{2^s}$. If s is even, let $s = k \cdot 2^r$, with k odd. By Lemma 4, $b_s = q \cdot 2^{r+2} + 1$, q odd, and therefore $b_s^2 \equiv 1 \pmod{2^{r+3}}$. Thus $b_s^2 \not\equiv 1 \pmod{2^s}$.

Lemma 10. If r and s are positive powers of the same odd prime p, then $|a_{rs}| > |a_s|$.

It is sufficient to prove that $|a_{pr^s}| > |a_{pr^e}|$. For $p = 3$ or 5, the lemma is true by Lemma 9. Now assume $p > 5$. Use (6) to get

$$a_{pr^s} = a_{pr}[b_{pr^e} - (p - 2)^{pr^e} b_{pr^e}] + \cdots,$$

all subsequent terms containing 2^{pr^e} as a factor. Let $p = k \cdot 2^u + 1$, k odd. Then $b_{pr^e} \equiv 1 \pmod{2^{u+2}}$. Now $p \geq k \cdot 2^u + 1$. If $k = 1$, then $u > 2$ since $p > 5$, and $2^s > 2^{u+2}$ since $2^u + 1 > u + 2$. If $k > 1$, then $k \cdot 2^u + 1 > u + 2$ for $u \geq 1$. Thus $|a_{pr^s}| > |a_{pr^e}|$.

Lemma 11. For r and s each greater than 2, then $|a_{rs}| > |a_s|$.

Let p^u divide rs, but not s. If p is 2, 3, 5, or 13, then $|a_{rs}| > |a_s|$ by Lemmas 8 and 9. If p is some other prime, then $|a_{rs}| \geq |a_s|$, and
\[|a_{rs}| \geq |a_{p^r}| > 1, \] by Lemma 7 and [1]. Since \(s \) is not a multiple of \(p^u \), \(a_s \) is not a multiple of \(a_{p^r} \), by Lemmas 7 and 10. Were \(|a_{rs}| = |a_s| \) then \(a_s \) would be a multiple of \(a_{p^r} \), hence \(|a_{rs}| > |a_s| \).

Theorem 1. Except for \(a_1 = a_2 = 1, a_4 = a_6 = a_{13} = -1 \), and for \(a_4 = a_8 = -3 \), if \(|a_s| = |a_s| \), then \(r = s \).

This is a consequence of Lemmas 7, 8, and 11.

3. **The formula** \(N(c) \). A formula for \(N(c) \) will now be developed through a series of lemmas.

Lemma 12. For \(p \) any odd prime \(a_p \equiv (-7)^{(p-1)/2} \) (mod \(p \)), and \(b_p \equiv 1 \) (mod \(p \)).

Since \(a_7 = 7 \), and \(b_7 = -13 \), the lemma is true for \(p = 7 \). For \(p \) any other odd prime, by (3) and (4),
\[
2^{r-1}a_p = p - \frac{7p(p-1)(p-2)}{3!} + \cdots + (-7)^{(p-1)/2},
\]
and
\[
2^{r-1}b_p = 1 - \frac{p(p-1)}{2!} + \cdots + p(-7)^{(p-1)/2},
\]
from which the lemma follows by inspection.

Lemma 13. For \(p \) any odd prime, if \((-7/p) = 1\), then \(a_{p-1} \equiv 0 \) (mod \(p \)), and if \((-7/p) = -1\), then \(a_{p+1} \equiv 0 \) (mod \(p \)).

If \((-7/p) = -1\), by Lemma 12, \(2a_{p+1} = a_p + b_p \equiv 0 \) (mod \(p \)). From the two equations \(2a_p = a_{p-1} + b_{p-1} \) and \(2b_p = -7a_{p-1} - b_{p-1} \), get \(4a_{p-1} = a_p - b_p \). Hence for \((-7/p) = 1\), \(a_{p-1} \equiv 0 \) (mod \(p \)).

Lemma 14. If \(p \) is any odd prime, \(r > 1 \), and \(a_s \equiv 0 \) (mod \(p^{r-1} \)), then \(a_{sp} \equiv 0 \) (mod \(p^r \)).

By (4),
\[
2^{r-1}a_{sp} = a_s \left(pb_s^{r-1} - \frac{7p(p-1)(p-2)}{3!} b_{p-1} a_s - \cdots \right),
\]
and \(a_{sp} \equiv 0 \) (mod \(p^r \)), since the expression in the parentheses has \(p \) as a factor of the first term and \(a_s \) as a factor of every other term.

Lemma 15. For every odd prime \(p \) there exists an \(s \) such that \(a_s \equiv 0 \) (mod \(p \)).

For \(p = 7 \), \(s = 7 \). For \(p \) any other odd prime, \(s \) is \(p - (-7/p) \), by Lemma 13.

Corollary. For every odd prime \(p \), and for every \(r > 0 \), there exists an \(s \) such that \(a_s \equiv 0 \) (mod \(p^r \)).

This follows from Lemma 14 by mathematical induction.
We are now ready to derive a formula \(N(c) \). Let \(q_i \) be any odd prime for which \(-7\) is a quadratic residue, and \(n_j \) any for which \(-7\) is a quadratic non-residue. Let \(c \), any positive odd integer, be written in the form

\[
c = 7^{p} \prod_{i,j} q_i^{e_i} n_j^{f_j}, \quad g \geq 0, \ i \geq 0, \ f_j \geq 0, \ e_i \geq 1, \ f_j \geq 1.
\]

Theorem 2. Let \(N(1) = 13, \ N(3) = 8 \), and for \(c \) any odd integer greater than 3, let \(N(c) \) be the least common multiple of all the factors \(7^g, q_i - 1, n_j + 1, q_i^{e_i - 1}, n_j^{f_j - 1} \), then if \(n > N(c) \), \(|a_n| \neq c \).

By [1], \(|a_n| > 1 \) if \(n > 13 \). By Theorem 1, if \(n > 8 \ |a_n| \neq 3 \). By Lemmas 12, 13, 14, and 15, \(a_{N(c)} = 0 \) (mod \(c \)). Suppose \(|a_n| = c, \ n > 3 \). By Theorem 1, this is true for only one \(n \). By Lemma 7, this \(n \) must be a factor of \(N(c) \), therefore \(n \leq N(c) \). Thus for all values of \(c \), if \(n > N(c) \), then \(|a_n| \neq c \).

REFERENCES

UNIVERSITY OF HAWAII

TWO NEW REPRESENTATIONS OF THE PARTITION FUNCTION

BASIL GORDON

MacMahon [1] defined a two-rowed partition of the positive integer \(n \) as a representation of the form \(n = \sum_{i=1}^{s} a_i + \sum_{j=1}^{t} b_j \) where the \(a_i \) and \(b_j \) are positive integers subject to the conditions \(r \leq s, \ a_i \geq a_{i+1}, \ b_j \geq b_{j+1}, \ a_i \geq b_i \). Such partitions may be conveniently visualized by placing the summands on two rows, the \(a_i \) on the top row and the \(b_j \) on the bottom row, with each \(b_j \) immediately beneath \(a_i \). Thus for \(n = 3 \) the partitions in question are (omitting + signs)

\[
3, \ 21, \ 2, \ 111, \ 11.
\]

\[
1 \ 1
\]

In this note the following two theorems will be proved.

Theorem 1. The number of two-rowed partitions of \(n \) satisfying \(a_i > a_{i+1}, \ b_j \geq b_{j+1} \) is \(p(n) \), the ordinary partition function of \(n \).

Received by the editors January 6, 1962.