Let s_n be a sequence in a p-dimensional Euclidean space E^p. Let $K_n = K(s_n, s_{n+1}, \cdots)$ be the convex hull of s_n, s_{n+1}, \cdots and \overline{K}_n its closure. The core of s_n is defined as $\bigcap_{n=1}^{\infty} \overline{K}_n$. Knopp's core theorem states that if $A = (a_{ij})$ is an infinite regular matrix with nonnegative elements, then the core of the A-transform of s_n is contained in the core of s_n. In particular if s_n is bounded, every A-limit of a subsequence of s_n is contained in the convex hull of limit points of s_n. With certain restrictions on A, the converse is also true; i.e., for any element ξ in the convex hull of limit points of s_n, there is a subsequence of s_n which is A-limitable to ξ. The main objective of this paper is to show that for any ξ in the convex hull of limit points of a bounded sequence s_n, there is a subsequence of s_n which is C_1 and E_1-limitable to ξ.

The following is Knopp's core theorem in E^p.

Theorem 1. Let s_n be a sequence in E^p and $A = (a_{ij})$ a regular matrix with $a_{ij} \geq 0$. Let K_n be the convex hull of s_n, s_{n+1}, \cdots and K_n' the convex hull of s'_n, s'_{n+1}, \cdots, where $s'_n = \sum_{j=1}^{m} a_n s_j$ is defined for each $n = 1, 2, \cdots$. Then $\bigcap_{n=1}^{\infty} \overline{K}_n' \subset \bigcap_{n=1}^{\infty} \overline{K}_n$.

Proof. For each $\epsilon > 0$, define $K_n = \{x \mid \inf_{y \in K_n} \|x - y\| \leq \epsilon\}$. For given m and $\epsilon > 0$, choose $\nu(m, \epsilon)$ so that

$$\left| \sum_{j=1}^{m-1} a_n s_j \right| < \epsilon, \quad \left| \sum_{j=1}^{\infty} a_n s_j - 1 \right| < \epsilon, \quad \left| \sum_{j=1}^{m-1} a_n \right| < \epsilon \quad \text{for } n \geq \nu.$$

Now choose an index $k(k(n))$ so that

$$\left| \sum_{j=m+k+1}^{\infty} a_n s_j \right| < \epsilon, \quad \left| \sum_{j=m+k+1}^{\infty} a_n \right| < \epsilon.$$

Then $\left| \sum_{j=m}^{m+k} a_n s_j - 1 \right| < 3\epsilon$. Assume $\epsilon < 1/3$ so that $\sum_{j=m}^{m+k} a_n s_j - 1 \neq 0$. Let $s'_n = \alpha_n + \beta_n + \gamma_n$ where

$$\alpha_n = \sum_{j=1}^{m-1} a_n s_j, \quad \beta_n = \sum_{j=m+k}^{\infty} a_n s_j, \quad \gamma_n = \sum_{j=m}^{m+k} a_n s_j.$$

Received by the editors March 13, 1961 and, in revised form, November 28, 1961.
Since $x_n \in K_m$ for every ϵ, $s'_n / \gamma_n \in K_{m'}$ for $n \geq \nu$ where $\epsilon' = 2\epsilon / (1 - 3\epsilon)$, $|\gamma_n - 1| < 3\epsilon$.

Now let $\xi \in K'_m$ for every ν. Then $\xi \in K'_n$ for every $\delta > 0$ and every n; therefore $\xi = a_1 s'_{n_1} + \cdots + a_s s'_{n_s} + \eta$ where $\|\eta\| < \delta$, $n_i \geq \nu$ for each i, $a_i > 0$ and $\sum_{i=1}^s a_i = 1$. Since $s'_n / \gamma_n \in K_{m'}$ for $n \geq \nu$, $\xi = \eta + \sum_{i=1}^s a_i x_n \gamma_n$, where $x_{n_i} \in K_{m'}$ for $n_i \geq \nu$ and $|\gamma_n - 1| < 3\epsilon$. Let $\gamma = \sum_{i=1}^s a_i \gamma_{n_i}$, then $(1/\gamma)(\sum_{i=1}^s a_i \gamma_{n_i} x_{n_i}) \in K_{m'}$; hence $\xi \in K_m$ for every m.

It is clear that $\bigcap_{n=1}^\infty K_n$ always contains limit points of s_n; hence it contains the convex hull of limit points of s_n. Moreover if s_n is bounded $\bigcap_{n=1}^\infty K_n$ is precisely the convex hull of limit points of s_n.

To see this let Q be the set of limit points of s_n and $N_\epsilon(x)$ the ϵ-neighborhood of x. Then for each $\epsilon > 0$, $\bigcup_{n=0}^\infty N_\epsilon(x)$ contains all but a finite number of s_n. Now choose an index p so that $s_n \in \bigcup_{n=0}^\infty N_\epsilon(x)$ for $n \geq p$. Moreover since $\xi \in K_{m'}$ for every $\delta > 0$ and m, $\xi = \sum_{i=1}^s a_i s_{n_i} + \eta$ where $a_i \geq 0$, $\sum_{i=1}^s a_i = 1$, $n_i \geq p$ and $\|\eta\| < \delta$. Therefore there are ξ_1, ξ_2, \cdots, ξ_s in Q such that $\xi = \eta + \sum_{i=1}^s a_i \xi_i + \sum_{i=1}^s a_i \epsilon_i$ where $\|\epsilon_i\| \leq \epsilon$; therefore, $\xi \in K_{m+\delta}(Q)$. Hence $\xi \in K(Q)$. The above remark and Knopp’s core theorem give the following corollary.

Corollary 1. If A is an infinite regular matrix with nonnegative elements, then every A-limit of a bounded sequence is in the convex hull of the limit points of the sequence.

The following is a sufficient condition on a regular matrix so that the converse of Corollary 1 holds.

Lemma 1. Let A be a nonnegative regular matrix. Suppose there is a set of sequences C consisting of 0s and 1s with the following properties:

(i) For any $0 \leq \alpha \leq 1$, there is a sequence in C which is A-limitable to α.

(ii) If $\lim_{i \to \infty} \sum_{j=1}^n a_{ij} x_j = \lim_{i \to \infty} \sum_{j=1}^n a_{ij} x_j = \alpha$ where $(x_i) \in C$, then $\lim_{i \to \infty} \sum_{j=1}^n a_{ij} x_j = \alpha \beta$ if $(x_i) \in C$ and is A-limitable to β.

Then for any ξ in the convex hull of limit points of a bounded sequence s_n in E^p, there is a subsequence which is A-limitable to ξ.

Proof. Let Q be the set of limit points of s_n, and let $\xi = \sum_{i=1}^n a_i \xi_i$ where $\xi_i \in Q$, $a_i > 0$, and $\sum_{i=1}^n a_i = 1$. Proceed by induction on m. If
m = 1, then simply choose a subsequence of s_n which converges to ξ. Let $a = \sum_{i=1}^{n-1} a_i$, $b_i = a_i/a$, $\eta = \sum_{i=1}^{n-1} b_i \xi_i$ so that $\xi = \eta a + a_0 \xi_0$. There is a subsequence s_{n_0} of s_n which is A-limitable to η. Also there is sequence ϵ_n in C so that

$$\lim_{i \to \infty} a_i \epsilon_i = \lim_{i \to \infty} a_i \epsilon_i = a.$$

Let

$$y_m = \begin{cases} s_{n_0} & \text{if } m = j_s, \\ \xi & \text{otherwise.} \end{cases}$$

Now let y'_m be the sequence obtained from y_m replacing the terms which equal ξ_0 by successive elements of s_n which converges to ξ_0 so that y'_m is a subsequence of s_n. By induction it is easy to see that y'_m thus constructed is A-limitable to ξ.

The next problem is to find a set C of Lemma 1 for C_l- and E_l-processes.

Lemma 2. There is a set of sequences C of Lemma 1 for C_l- and E_l-processes.

Proof. Let $\alpha \in [0, 1]$ and $\alpha = a_0 a_1 a_2 \cdots$ be a binary representation of α. For each positive integer $k \geq 2$ define a sequence s^k as follows,

$$s^k_{2n-1} = 0, \quad s^k_{2n} = 0, \quad s^k_{2^k} = 1, \quad s^k_{2^k} = 0$$

and for $k = 1$, define $s^1_{2n-1} = 1, s^1_{2n} = 0$. Then s^k is C_l-limitable to $\frac{1}{2^k}$ for each k, and $s^k = 1$ for each n. Now the sequence defined by $s_n = \sum_{i=1}^{n-1} s^k = 1$ for each n. Now the sequence defined by $s_n = \sum_{i=1}^{n-1} a_i s^k$ consists of the elements 0 and 1, and C_l-limitable to α. The condition (ii) of Lemma 1 can easily be verified. Note that every sequence used in the proof satisfies the condition $(s_1 + \cdots + s_n)/n = \xi + o(1/\sqrt{n})$ where ξ is the C_l-limit of s_n; hence it is also E_l-limitable to ξ. Lemma 1 and Lemma 2 give the following theorem.

Theorem 2. Let s_n be any bounded sequence in E^p. Let ξ be any element in the convex hull of limit points of s_n, then there is a subsequence of s_n which is C_l- and E_l-limitable (hence also Abel and Borel limitable) to ξ.

In general it is not possible to extend the result to unbounded sequences. For example $0, 1, 0, 2, 0, 3, \cdots$ has no C_l-limitable except the trivial ones. However, it can be shown that the sequence can be rearranged so that the resulting sequence is C_l-limitable to
any pre-assigned nonnegative number. But the sequence 0, 1!, 0, 2!, 0, 3!, ... does not even have this property. In general if \(s_n \) is a sequence having a limit point \(\xi \) and it has a subsequence \(k_n \to \infty \) with \(k_n/(k_1+\cdots+k_n)\to 0 \), then for \(\xi < \alpha < \infty \) it is possible to find a rearrangement of \(s_n \) whose \(C_1 \)-limit is \(\alpha \). Without loss of generality assume \(\xi = 0 \). Let \(\lfloor (k_1+\cdots+k_n)/\alpha \rfloor \) be the greatest integer less than or equal to \((k_1+\cdots+k_n)/\alpha \). Construct a sequence \(y_n \) inserting 0s in \(k_1, k_2, \cdots \) so that the number of 0s preceding \(k_n \) is \(\lfloor (k_1+\cdots+k_n)/\alpha \rfloor \). Then \(y_n \) is \(C_1 \)-limitable to \(\alpha \). Now there is a subsequence \(s_{n_k} \) of \(s_n \) which converges to 0. Replace each element in \(y_n \) which equals 0 by successive elements of \(s_{n_k} \). Then the sequence \(y_n' \) thus constructed is \(C_1 \)-limitable to \(\alpha \). Now insert the rest of the elements of \(s_n \) in \(y_n' \) occasionally so that the resulting sequence has \(C_1 \)-limit \(\alpha \). This remark can be made also in \(E^p \) without much difficulty.

References

Rutgers University and
University of Pittsburgh