Let \(s_n \) be a sequence in a \(p \)-dimensional Euclidean space \(E^p \). Let \(K_n = K(s_n, s_{n+1}, \ldots) \) be the convex hull of \(s_n, s_{n+1}, \ldots \) and \(\overline{K}_n \) its closure. The core of \(s_n \) is defined as \(\bigcap_{n=1}^{\infty} \overline{K}_n \). Knopp’s core theorem states that if \(A = (a_{ij}) \) is an infinite regular matrix with nonnegative elements, then the core of the \(A \)-transform of \(s_n \) is contained in the core of \(s_n \). In particular if \(s_n \) is bounded, every \(A \)-limit of a subsequence of \(s_n \) is contained in the convex hull of limit points of \(s_n \). With certain restrictions on \(A \), the converse is also true; i.e., for any element \(\xi \) in the convex hull of limit points of \(s_n \), there is a subsequence of \(s_n \) which is \(A \)-limitable to \(\xi \). The main objective of this paper is to show that for any \(\xi \) in the convex hull of limit points of a bounded sequence \(s_n \), there is a subsequence of \(s_n \) which is \(C_1 \)- and \(E_1 \)-limitable to \(\xi \).

The following is Knopp’s core theorem in \(E^p \).

Theorem 1. Let \(s_n \) be a sequence in \(E^p \) and \(A = (a_{ij}) \) a regular matrix with \(a_{ij} \geq 0 \). Let \(K_n \) be the convex hull of \(s_n, s_{n+1}, \ldots \) and \(K_n' \) the convex hull of \(s_n', s_{n+1}', \ldots \), where \(s_n' = \sum_{j=1}^{\infty} a_{nj}s_j \) is defined for each \(n = 1, 2, \ldots \). Then \(\bigcap_{n=1}^{\infty} K_n' \subset \bigcap_{n=1}^{\infty} \overline{K}_n \).

Proof. For each \(\varepsilon > 0 \), define \(K_n = \{ x \mid \inf_{y \in K_n} \| x - y \| \leq \varepsilon \} \). For given \(m \) and \(\varepsilon > 0 \), choose \(n(m, \varepsilon) \) so that
\[
\left| \sum_{j=m+1}^{\infty} a_{nj}s_j \right| < \varepsilon, \quad \left| \sum_{j=m+1}^{\infty} a_{nj} - 1 \right| < \varepsilon, \quad \left| \sum_{j=m}^{\infty} a_{nj} \right| < \varepsilon \quad \text{for } n \geq n(m, \varepsilon).
\]

Now choose an index \(k(n) \) so that
\[
\left| \sum_{j=m+k+1}^{\infty} a_{nj}s_j \right| < \varepsilon, \quad \left| \sum_{j=m+k+1}^{\infty} a_{nj} \right| < \varepsilon.
\]

Then \(\sum_{j=m}^{n+k+1} a_{nj} - 1 \leq 3\varepsilon \). Assume \(\varepsilon < 1/3 \) so that \(\sum_{j=m}^{n+k+1} a_{nj} \neq 0 \). Let \(s_n' = \alpha_n + \beta_n + \gamma_n \) where
\[
\alpha_n = \sum_{j=1}^{m-1} a_{nj}s_j, \quad \beta_n = \sum_{j=m+k+1}^{\infty} a_{nj}s_j, \quad \gamma_n = \sum_{j=m+k+1}^{\infty} a_{nj}.
\]

Received by the editors March 13, 1961 and, in revised form, November 28, 1961.

971
and

\[x_n = \frac{\sum_{j=m}^{m+k} a_n s_j}{\sum_{j=m}^{m+k} a_n} \]

Since \(x_n \in K_m \) for every \(\epsilon > 0 \) and \(s_n' / \gamma_n \in K_{m'} \) for \(n \geq \nu \) where \(\epsilon' = 2\epsilon / (1 - 3\epsilon) \), \(|\gamma_n - 1| < 3\epsilon \).

Now let \(\xi \in K_m' \) for every \(n \). Then \(\xi \in K_{m'} \) for every \(\delta > 0 \) and every \(n \); therefore \(\xi = a_1 s_{n_1} + \cdots + a_k s_{n_k} + \eta \) where \(\|\eta\| < \delta \), \(n_i \geq \nu \) for each \(i \), \(a_i > 0 \) and \(\sum_{i=1}^{k} a_i = 1 \). Since \(s_n' / \gamma_n \in K_{m'} \) for \(n \geq \nu \), \(\xi = \gamma + \sum_{i=1}^{k} a_i x_{n_i} \gamma_{n_i} \) where \(x_{n_i} \in K_{m'} \) for \(n_i \geq \nu \) and \(|\gamma_{n_i} - 1| < 3\epsilon \). Let \(\gamma = \sum_{i=1}^{k} a_i \gamma_{n_i} \), then \((1/\gamma)(\sum_{i=1}^{k} a_i \gamma_{n_i} x_{n_i}) \in K_{m'}\); hence \(\xi \in K_m \) for every \(m \).

It is clear that \(\cap_{n=1}^{\infty} K_n \) always contains limit points of \(s_n \); hence it contains the convex hull of limit points of \(s_n \). Moreover if \(s_n \) is bounded \(\cap_{n=1}^{\infty} K_n \) is precisely the convex hull of limit points of \(s_n \). To see this let \(Q \) be the set of limit points of \(s_n \) and \(N_\delta(x) \) the \(\epsilon \)-neighborhood of \(x \). Then for each \(\epsilon > 0 \), \(\cup_{\delta \in Q} N_\delta(x) \) contains all but a finite number of \(s_n \). Now choose an index \(p \) so that \(s_n \in \bigcup_{\delta \in Q} N_\delta(x) \) for \(n \geq p \). Moreover since \(\xi \in K_{m'} \) for every \(\delta > 0 \) and \(m \), \(\xi = \sum_{i=1}^{k} a_i s_{n_i} + \eta \) where \(a_i \geq 0 \), \(\sum_{i=1}^{k} a_i = 1 \), \(n_i \geq \nu \) and \(\|\eta\| < \delta \). Therefore there are \(\xi_1, \xi_2, \ldots, \xi_k \) in \(Q \) such that \(\xi = \gamma + \sum_{i=1}^{k} a_i \xi_i + \sum_{i=1}^{k} a_i \xi_i \) where \(\|s_k\| \leq \epsilon \); therefore, \(\xi \in K_{m+k}(Q) \). Hence \(\xi \in K(Q) \). The above remark and Knopp’s core theorem give the following corollary.

Corollary 1. If \(A \) is an infinite regular matrix with nonnegative elements, then every \(A \)-limit of a bounded sequence is in the convex hull of the limit points of the sequence.

The following is a sufficient condition on a regular matrix so that the converse of Corollary 1 holds.

Lemma 1. Let \(A \) be a nonnegative regular matrix. Suppose there is a set of sequences \(\mathbf{C} \) consisting of 0s and 1s with the following properties;

(i) For any \(0 \leq \alpha \leq 1 \), there is a sequence in \(\mathbf{C} \) which is \(A \)-limitable to \(\alpha \).

(ii) If \(\lim_{i \to \infty} \sum_{j=1}^{n} a_{ij} x_j = \lim_{i \to \infty} \sum_{j=1}^{n} a_{ij} = \alpha \) where \((x_i) \in \mathbf{C} \), then \(\lim_{i \to \infty} \sum_{j=1}^{n} a_{ij} x_j = a \beta \) if \((x_i) \in \mathbf{C} \) and is \(A \)-limitable to \(\beta \).

Then for any \(\xi \) in the convex hull of limit points of a bounded sequence \(s_n \) in \(E^p \), there is a subsequence which is \(A \)-limitable to \(\xi \).

Proof. Let \(Q \) be the set of limit points of \(s_n \), and let \(\xi = \sum_{i=1}^{n} a_i \xi_i \) where \(\xi_i \in Q \), \(a_i > 0 \), and \(\sum_{i=1}^{n} a_i = 1 \). Proceed by induction on \(m \). If
Let $a = \sum_{i=1}^{\infty} a_i$, $b_i = a_i/a$, $\eta = \sum_{i=1}^{\infty} b_i \xi_i$ so that $\xi = \eta a + a_0 \xi_0$. There is a subsequence s_{n_r} of s_n which is A-limitable to η. Also there is sequence e_n in C so that

$$\lim_{i \to \infty} \sum_{j=1}^{\infty} a_{ij} e_j = \lim_{i \to \infty} \sum_{j=1}^{\infty} a_{ij} = a.$$

Let

$$y_m = \begin{cases} s_{n_r} & \text{if } m = j_r, \\ \xi_k & \text{otherwise.} \end{cases}$$

Now let y'_m be the sequence obtained from y_m replacing the terms which equal ξ_k by successive elements of s_n which converges to ξ_k so that y'_m is a subsequence of s_n. By induction it is easy to see that y'_m thus constructed is A-limitable to ξ.

The next problem is to find a set C of Lemma 1 for C_1- and E_1-processes.

Lemma 2. There is a set of sequences C of Lemma 1 for C_1- and E_1-processes.

Proof. Let $a \in [0, 1]$ and $a = 0 \cdot a_1 a_2 \cdots$ be a binary representation of a. For each positive integer $k \geq 2$ define a sequence s_k as follows,

$$s_k(2n-1) = 0, \quad s_k(2n) = 0, \ldots, s_k(2k-1) = 1, \quad s_k(2k) = 0$$

and for $k = 1$, define $s_1_{2n-1} = 1$, $s_1_{2n} = 0$. Then s_k is C_1-limitable to $1/2^k$ for each k, and $\sum_{n=1}^{\infty} s_n = 1$ for each n. Now the sequence defined by $s_n = \sum_{k=1}^{\infty} s_n s_k$ consists of the elements 0 and 1, and C_1-limitable to a. The condition (ii) of Lemma 1 can easily be verified. Note that every sequence used in the proof satisfies the condition $(s_1 + \cdots + s_n)/n = \xi + o(1/\sqrt{n})$ where ξ is the C_1-limit of s_n; hence it is also E_1-limitable to ξ. Lemma 1 and Lemma 2 give the following theorem.

Theorem 2. Let s_n be any bounded sequence in E^n. Let ξ be any element in the convex hull of limit points of s_n, then there is a subsequence of s_n which is C_1- and E_1-limitable (hence also Abel and Borel limitable) to ξ.

In general it is not possible to extend the result to unbounded sequences. For example $0, 1, 0, 2, 0, 3, \cdots$ has no C_1-limitable except the trivial ones. However, it can be shown that the sequence can be rearranged so that the resulting sequence is C_1-limitable to
any pre-assigned nonnegative number. But the sequence 0, 1!, 0, 2!, 0, 3!, ... does not even have this property. In general if \(s_n \) is a sequence having a limit point \(\xi \) and it has a subsequence \(k_n \to \infty \) with \(k_n/(k_1 + \cdots + k_n) \to 0 \), then for \(\xi < \alpha < \infty \) it is possible to find a rearrangement of \(s_n \) whose \(C_1 \)-limit is \(\alpha \). Without loss of generality assume \(\xi = 0 \). Let \(\lfloor (k_1 + \cdots + k_n)/\alpha \rfloor \) be the greatest integer less than or equal to \((k_1 + \cdots + k_n)/\alpha \). Construct a sequence \(y_n \) inserting 0s in \(k_1, k_2, \ldots \) so that the number of 0s preceding \(k_n \) is \(\lfloor (k_1 + \cdots + k_n)/\alpha \rfloor \). Then \(y_n \) is \(C_1 \)-limitable to \(\alpha \). Now there is a subsequence \(s_{n_k} \) of \(s_n \) which converges to 0. Replace each element in \(y_n \) which equals 0 by successive elements of \(s_{n_k} \). Then the sequence \(y'_n \) thus constructed is \(C_1 \)-limitable to \(\alpha \). Now insert the rest of the elements of \(s_n \) in \(y'_n \) occasionally so that the resulting sequence has \(C_1 \)-limit \(\alpha \). This remark can be made also in \(E^p \) without much difficulty.

References

Rutgers University and
University of Pittsburgh