MULTIPLIER TRANSFORMATIONS. III

I. I. HIRSCHMAN, JR.

Let $N_a, -1/2 < \alpha < 1/2$, be the space of those complex valued functions $F(n), n \in I$ the additive group of integers, for which $N_a[F]$ is finite where

$$N_a[F] = \left[\sum_{-\infty}^{\infty} |F(n)|^2 |n + 1|^{2\alpha} \right]^{1/2}.$$

If $F \in N_0$ the Fourier transform (M_2)

$$\hat{F}^\ast(\theta) = \sum_{-\infty}^{\infty} F(n) e^{2\pi i n \theta},$$

is defined as a limit in the mean of order 2 for $\theta \in T$, where T is the additive group of real numbers modulo 1. For such F the following inversion formula is valid,

$$F(n) = \int_T \hat{F}^\ast(\theta) e^{-2\pi i n \theta} d\theta.$$

Let $t(\theta)$ be a bounded measurable function on T and let us define

$$TF^\ast(n) = \int_T \hat{F}^\ast(\theta) t(\theta) e^{-2\pi i n \theta} d\theta$$

for $n \in I$ and $F \in N_0$. If

$$N_a[T] = 1.0.1.b. \{ N_a[TF] / N_a[F], F \in N_a \cap N_0, F \neq 0 \}$$

is finite then, since $N_a \cap N_0$ is dense in N_a, T has a unique extension as a bounded linear transformation (with norm $N_a[T]$) of N_a into itself. The problem with which we are concerned is that of finding sufficient conditions on the multiplier function $t(\theta)$ which will insure that the corresponding multiplier transformation T is bounded on N_a. In the present paper, which continues investigations begun in $[1; 2; 3]$, we will obtain a sufficient condition involving β-variation.

A function $f(x)$ defined on $I = \{ a \leq x \leq b \}$ is said to be of bounded β-variation (1 $\leq \beta < \infty$) if $V_\beta[f, I] = V_\beta[f]$ is finite where

$$V_\beta[f] = 1.0.1.b. \left[\sum_{k=0}^{n} |f(x_{k+1}) - f(x_k)|^\beta \right]^{1/\beta}.$$

Received by the editors October 30, 1961.

851
Here the least upper bound is taken over all finite sets \(a \leq x_0 < x_1 < \cdots < x_n \leq b \). Note that if \(\beta_2 > \beta_1 \)

\[
V_{\beta_1}[f]^{\beta_1} \leq (2||f||_{\infty})^{\beta_2 - \beta_1} V_{\beta_1}[f]^{\beta_1}.
\]

Thus if \(V_{\beta_1}[f] \) is finite then so is \(V_{\beta_2}[f] \). Our principal result is that if \(V_{\beta_1}[t(\theta)] \) is finite, \(\beta \geq 2 \), then \(N_\alpha[T] \) is finite for \(|\alpha| < 1/\beta \). This result is of interest in that the entire permissible range of \(\alpha, -1/2 < \alpha < 1/2 \), is already obtained for \(\beta = 2 \).

We begin by recalling several results from [2] and [3]. Let \(0 < \alpha < 1/2 \) be fixed. Note that for \(\alpha > 0 \), \(N_\alpha \subset N_\gamma \) so that \(F^*(\theta) \) is well defined for every \(F \in N_\alpha \). For \(t(\theta) \) a bounded measurable function on \(T \) we define \(A_\alpha[t] \) to be the smallest constant such that

\[
\int_T \int_T |F^*(\theta)|^2 |t(\theta) - t(\phi)|^2 \sin \pi(\theta - \phi)|^{-1-2\alpha} d\theta d\phi \leq A_\alpha[t] N_\alpha[F]^2
\]

for every \(F \in N_\alpha \). \(A_\alpha[t] \) may of course be \(+\infty \).

Lemma 1. For \(0 < \alpha < 1/2 \) we have

\[
N_\alpha[T] \leq 2 \max\{|d|, A_\alpha[t]\}.
\]

Lemma 2. For \(0 < \alpha < 1/2 \) there is a constant \(A(\alpha) \) depending only on \(\alpha \) such that for any \(\psi \) in \(T \)

\[
\int_T \left| F(\theta) \right|^2 \sin \pi(\theta - \phi)|^{-2\alpha} d\theta \leq A(\alpha) N_\alpha[F]^2.
\]

Lemma 3. Let \(f(x) \) be a real function defined on the interval \(I = \{ a \leq x \leq b \} \). For each \(\beta > 1 \) there exists a constant \(C(\beta) \) depending only on \(\beta \) such that for each \(f \) for which \(V_\beta[f] < \infty \) and each \(\epsilon > 0 \) there exists \(f_\epsilon(x) \) with the properties:

a. \(||f - f_\epsilon||_\infty \leq \epsilon \quad x \in I \);

b. \(V_1[f_\epsilon] \leq C(\beta) V_\beta[f]^{1-\beta} \).

Here \(||\cdot||_\infty \) is the uniform norm on \(I \). This is proved in [2] under the added assumption that \(f(x) \) is continuous. However a simple modification of the proof given there shows that this assumption is unnecessary.

Lemma 4. Suppose that \(0 < \alpha < 1/2 \). Let \(t(\theta) \) be of bounded 1-variation on \(T \). Then if \(T \) is the corresponding multiplier transformation we have

\[
N_\alpha[T]^2 \leq B(\alpha) \{||d||_\infty^2 + ||d||_\infty V_1[t]\},
\]

where \(B(\alpha) \) is a finite constant depending only on \(\alpha \).

Proof. We begin by proving this result under the assumption that
\(\phi(\theta) \) is in addition continuous. At the end this restriction will be removed, using a standard approximation argument. For \(F \in \mathcal{N}_a \) consider the quantity

\[
Q = \int_T F^-(\theta)^2 d\theta \int_T |\phi(\theta) - \phi(\phi)| \sin \pi(\theta - \phi)^{-1-2a} d\phi
\]

\[
\leq 2||d||_\infty \int_T |F^-(\theta)|^2 d\theta \int_T |\phi(\theta) - \phi(\phi)| \sin \pi(\theta - \phi)^{-1-2a} d\phi.
\]

We have

\[
\int_T |\phi(\theta) - \phi(\phi)| \sin \pi(\theta - \phi)^{-1-2a} d\phi \leq I_1 + I_2
\]

where

\[
I_1 = \int_\phi^\phi |\sin \pi(\theta - \phi)^{-1-2a} d\phi \int_\phi^\phi |d\phi|.
\]

\[
I_2 = \int_\phi^\phi |\sin \pi(\theta - \phi)^{-1-2a} d\phi \int_\phi^\phi |d\phi|.
\]

By Fubini's theorem

\[
I_1 = \int_\phi^\phi |d\phi| \int_\phi^\phi |\sin \pi(\theta - \phi)^{-1-2a} d\phi|.
\]

An easy computation shows that there exists a constant \(A_1(\alpha) \) such that if \(\theta \leq \phi \leq \theta + 1/2 \)

\[
\int_\phi^\phi |\sin \pi(\theta - \phi)^{-1-2a} d\phi| \leq A_1(\alpha) |\sin \pi(\theta - \phi)^{-2a}.
\]

Thus

\[
I_1 \leq A_1(\alpha) \int_\phi^\phi |\sin \pi(\theta - \phi)^{-2a} d\phi|,
\]

and similarly

\[
I_2 \leq A_1(\alpha) \int_\phi^\phi |\sin \pi(\theta - \phi)^{-2a} d\phi|.
\]

Making use of these inequalities and using Fubini's theorem we find that

\[
Q \leq 2A_1(\alpha)||d||_\infty \int_T |F^-(\theta)|^2 d\theta \int_T |\sin \pi(\theta - \phi)^{-2a} d\phi|.
\]

\[
\leq 2||d||_\infty A_1(\alpha) \int_T |d\phi| \int_T |F^-(\theta)|^2 \sin \pi(\theta - \phi)^{-2a} d\phi.
\]
Applying Lemma 2 we obtain
\[Q \leq 2A_1(\alpha)A(\alpha)\|t\|_\infty V_1[t]N_a[F]^2. \]

Thus \(A_a[t] \leq 2A_1(\alpha)A(\alpha)\|t\|_\infty V_1[t] \). Our proof is now complete if \(t(\theta) \) is continuous. If \(t(\theta) \) is not continuous we set
\[
t_n(\theta) = \int_T k_n(\theta - \phi)t(\phi)d\phi \quad n = 1, 2, \ldots \]

where \(k_n(\theta) \) is any sequence of functions on \(T \) satisfying:

i. \(k_n(\theta) \) is continuous;

ii. \(k_n(\theta) \geq 0, \int_T k_n(\theta)d\theta = 1; \)

iii. \(\lim_{n \to \infty} \int_U k_n(\theta)d\theta = 1 \), for any fixed open set \(U \) in \(T \) which contains 0.

With these assumptions it is easily verified that:

i. \(\|t_n\|_\infty \leq \|t\|_\infty; \)

ii. \(V_1[t_n] \leq V_1[t]; \)

iii. \(\lim_{n \to \infty} t_n(\theta) = t(\theta) \) for all \(\theta \) at which \(t(\cdot) \) is continuous.

Let \(T_n \) be the multiplier transform generated by \(t_n(\theta) \); then
\[
N_a[T] \leq \liminf_{n \to \infty} N_a[T_n].
\]

Since \(t_n(\theta) \) is continuous
\[
N_a[T_n]^2 \leq B(\alpha)\{\|t_n\|_\infty^2 + \|t_n\|_\infty V_1[t_n]\},
\]
\[
\leq B(\alpha)\{\|t\|_\infty^2 + \|t\|_\infty V_1[t]\}.
\]

Combining these results our desired lemma follows.

Theorem. Let \(t(\theta) \) be defined for \(\theta \in T \) and let \(T \) be the corresponding multiplier transformation. If \(V_\beta[t] \) is finite (where \(\beta > 2 \)) then
\[
N_a[T] < \infty \quad \text{if} \quad \alpha < 1/\beta.
\]

Proof. By Lemma 3 there exists a sequence of functions \(s_n(\theta) \), \(\theta \in T \), such that
\[
\|s_n - t\|_\infty \leq 2^{-n},
\]
\[
V_1[s_n] \leq C(\beta)V_\beta[f]2^{\beta(\beta-1)} \quad n = 1, 2, \ldots.
\]

Let
\[
t_1(\theta) = s_1(\theta),
\]
\[
t_n(\theta) = s_n(\theta) - s_{n-1}(\theta) \quad n = 2, 3, \ldots.
\]
Then

$$l(\theta) = \sum_{n}^{\infty} l_n(\theta),$$

and thus by an evident argument

$$N_n[T] \leq \sum_{n}^{\infty} N_n[T_n]$$

where T_n is the multiplier transformation generated by the multiplier function $l_n(\theta)$. We have

$$\|l_n\|_\infty = O(2^{-n}) \quad n = 1, 2, \ldots,$$

$$\mathcal{V}_1[T_n] = O(2^{n(\beta-1)}) \quad n = 1, 2, \ldots.$$

Choose $\gamma, \alpha < \gamma < 1/2$. By Lemma 4

$$N_\gamma[T_n] = O\left[(2^{-n})^2 + 2^{-n}2^{n(\beta-1)}\right]^{1/2},$$

$$= O(2^{n(\beta/2-1)}).$$

On the other hand by Parseval’s equality

$$N_\delta[T_n] = \|l_n\|_\infty = O(2^{-n}).$$

Applying the Riesz-Thorin convexity theorem we find that if $\alpha = (1-\theta)0 + \theta\gamma$ then

$$N_\alpha[T_n] = O(2^{-n(1-\theta)2^{n(\beta/2-1)\gamma}}),$$

$$= O(2^{n(-1+\beta\gamma/2\gamma)}).$$

Thus the series $\sum_n^{\infty} N_\alpha[T_n]$ is convergent if $\beta\alpha/2\gamma < 1$; that is if $\alpha < 2\gamma/\beta$. Since γ is arbitrary subject to the restriction $\alpha < \gamma < 1/2$, it is always possible to choose γ so that $\alpha < 2\gamma/\beta$ if $0 < \alpha < 1/\beta$. Thus our theorem is true if $0 < \alpha < 1/\beta$. The case $-1/\beta < \alpha < 0$ follows by a familiar duality argument, while the case $\alpha = 0$ is trivial.

For $f(x)$ defined on the interval I let $W_\beta[f, I]$ be the smallest constant such that for every $\varepsilon > 0$ there exists a function $f_\epsilon(x), x \in I$, satisfying:

a. $\|f - f_\epsilon\|_\infty \leq \varepsilon,

b. \mathcal{V}_1[f_\epsilon, I] \leq W_\beta[f, I] \varepsilon^{1-\beta}.$

$W_\beta[f, I]$ can of course be ∞. Lemma 3 asserts that

$$W_\beta[f, I] \leq C(\beta) \mathcal{V}_\beta[f, I] \varepsilon^{\delta}.$$

(1)

The assumption in our principal theorem that $\mathcal{V}_\beta[f, T] < \infty$ is made only to insure that $W_\beta[f, T] < \infty$. The following lemma shows that
the assumption $W_\beta[f, T] < \infty$ is "almost" as strong as the assumption $V_\beta[f, T] < \infty$.

Lemma 5. For each β, $1 \leq \beta < \infty$, and each $\gamma > \beta$ there exists a finite constant $A(\beta, \gamma)$ such that

\[V_\gamma[f, I] \leq A(\beta, \gamma) \|f\|_\infty^{(\gamma-\beta)/\gamma} W_\beta[f, I]^{1/\gamma}. \]

Proof. For each $k = 0, 1, \ldots$ let f_k satisfy

\[\|f - f_k\|_\infty \leq 2^{-k} \|f\|_\infty, \]

\[V_1[f_k] \leq W_\beta[f] 2^{k(\beta-1)} \|f\|_\infty^{1-\beta}. \]

If we define

\[g_0(x) = f_0(x), \]

\[g_k(x) = f_k(x) - f_{k-1}(x) \quad k = 1, 2, \ldots, \]

then

\[\sum_{k=0}^{\infty} g_k(x) = f(x) \quad x \in I. \]

Moreover

\[\|g_k(x)\|_\infty \leq 4 2^{-k} \|f\|_\infty, \]

\[V_1[g_k] \leq 2 W_\beta[f] 2^{k(\beta-1)} \|f\|_\infty^{1-\beta}. \]

It is easy to see using Hölder’s inequality that $V_\gamma[f] \leq \sum_0^\infty V_\gamma[g_k]$. Also

\[V_\gamma[g]^\gamma \leq (2 \|g\|_\infty)^{\gamma-1} V_1[g]. \]

Thus

\[V_\gamma[f] \leq \sum_{0}^{\infty} (2^{-k} \|f\|_\infty)^{(\gamma-1)/\gamma} (2 W_\beta[f] 2^{k(\beta-1)} \|f\|_\infty^{1-\beta})^{1/\gamma} \]

\[\leq \|f\|_\infty^{(\gamma-\beta)/\gamma} W_\beta[f]^{1/\gamma} 2^{(3\gamma-2)/\gamma} \sum_{0}^{\infty} 2^{-k(\gamma-\beta)/\gamma} \]

\[\leq A(\beta, \gamma) \|f\|_\infty^{(\gamma-\beta)/\gamma} W_\beta[f]^{1/\gamma}. \]

On the other hand the assumption $W_\beta[f] < \infty$ is slightly weaker than the assumption $V_\beta[f] < \infty$ in that for $\beta > 1$ no inequality of the form

\[V_\beta[f, I]^{\beta} \leq A(\beta) W_\beta[f, I] \]
is true for all \(f \). To see this let us set \(I_k = \{ k - 1 \leq x \leq k \} \) for all \(k = 0, 1, 2, \ldots \), and \(I_N = I_1 \cup I_2 \cup \cdots \cup I_N \). Further let

\[
f_1(x) = 2^{-k/\beta} \sin[2^k(2\pi x)]
\]

\(x \in I_k \).

Very simple computations show that there are positive constants \(c_1(\beta) \) and \(c_2(\beta) \) independent of \(k \) and \(N \) such that

\[
W_\beta[f_1, I_k] \geq c_1(\beta) \qquad k = 1, 2, \ldots ,
\]

\[
W_\beta[f_1, I_N] \leq c_2(\beta) \qquad N = 1, 2, \ldots .
\]

It is evident that

\[
\sum_{1}^{N} V_\beta[f, I_k] \leq V_\beta[f, I_N].
\]

If (3) held then using (1) we would have

\[
C(\beta)^{-1} \sum_{1}^{N} W_\beta[f, I_k] \leq A'(\beta)W_\beta[f, I_N].
\]

However for \(f = f_1 \) and for \(N \) sufficiently large this is impossible.

REFERENCES