1. Introduction. Let X be a Banach space, $\mathfrak{B}(X)$ the closure of the algebra of all bounded linear operators on X of finite rank, the closure being taken in the topology of the norm

$$
\|B\| = \sup_{x \in X} \frac{\|Bx\|}{\|x\|}, \quad B \in \mathfrak{B}(X).
$$

The present paper is concerned with a generalization of a theorem of F. Bonsall and A. W. Goldie [1] which states that if X is reflexive then $\mathfrak{B}(X)$ is an annihilator algebra.

It is shown that if X is quasi-reflexive the algebra $\mathfrak{B}(X)$ can be written as the direct sum of four closed subalgebras

$$
\mathfrak{B}(X) = \mathfrak{A}_1 \oplus \mathfrak{B}_1 \oplus \mathfrak{B}_2 \oplus \mathfrak{B}_3,
$$

where \mathfrak{A}_1 is a right annihilator algebra which is annihilated on the right by the right ideal \mathfrak{B}_2 and $\mathfrak{A}_1 \oplus \mathfrak{B}_1$ is a left annihilator algebra which is annihilated on the left by the nilpotent algebra \mathfrak{B}_3. Moreover if X is reflexive we have $\mathfrak{B}_1 = \mathfrak{B}_2 = \mathfrak{B}_3 = (0)$, so that the above mentioned theorem is obtained as a special case of the present result.

2. Definitions and notation. Let X be a Banach space, X^* and X^{**} its first and second conjugate spaces. The symbol π will be used to denote the canonical isomorphism of X into X^{**}. The annihilator in X^* of a subspace Y of X will be denoted by Y^+. If $x \in X$ and $x^* \in X^*$ then as in [4] we use the symbol $x \otimes x^*$ to denote the one dimensional operator on X defined by the equation

$$
(x \otimes x^*)y = x^*(y)x \quad \text{for each } y \in X.
$$

Throughout this paper the closure of the algebra of bounded linear operators of finite rank will be denoted by $\mathfrak{B}(X)$. All algebras of operators under consideration are considered to be normed with the operator bound, that is

$$
\|A\| = \sup_{x \in X} \frac{\|Ax\|}{\|x\|}.
$$

If A is an operator on a Banach space X, we denote by A^* the...
adjoint of A, that is the operator on X^* defined by $A^*x^*(x) = x^*(Ax)$. The symbol I will denote the identity operator.

Let \mathfrak{A} be an algebra and $\mathfrak{C} \subseteq \mathfrak{A}$. The right (left) annihilator of \mathfrak{C} will be denoted by $R(\mathfrak{C})(L(\mathfrak{C}))$.

An algebra \mathfrak{A} is called a right (left) annihilator algebra [4] if for every closed left (right) ideal \mathfrak{I} we have $R(\mathfrak{I}) = (0)$, $(L(\mathfrak{I}) = (0))$ if and only if $\mathfrak{I} = \mathfrak{A}$.

A Banach space X is called quasi-reflexive of order n [2] if the quotient space $X^{**}/\pi X$ is (finite) n-dimensional.

3. Preliminary lemmas.

3.1. Lemma. Let X be a Banach space, Y_i, $i = 1, 2$, closed linear subspaces of X such that $X = Y_1 \oplus Y_2$. Let \mathfrak{B}_i be the subset of $\mathfrak{B}(X)$ consisting of those operators in $\mathfrak{B}(X)$ with range contained in Y_i, $i = 1, 2$. Then \mathfrak{B}_i is a closed right ideal in $\mathfrak{B}(X)$ and $\mathfrak{B}(X) = \mathfrak{B}_1 \oplus \mathfrak{B}_2$.

Proof. Let $A \in \mathfrak{B}_i$, $B \in \mathfrak{B}(X)$, then Range $AB \subseteq Y_i$, therefore \mathfrak{B}_i is a right ideal. If $A_n \in \mathfrak{B}_i$ and $A_n \to A$ in the norm topology of $\mathfrak{B}(X)$, then for each $x \in X$, $A_n x \in Y_i$ and $A_n x \to A x$ in the norm topology of X. Since Y_i is closed, $A x \in Y_i$, so $A \in \mathfrak{B}_i$. Thus, it follows that \mathfrak{B}_i is a closed right ideal in $\mathfrak{B}(X)$. Now, since $X = Y_1 \oplus Y_2$ there exists a continuous projection P of X onto Y_1 with null space Y_2. If $B \in \mathfrak{B}(X)$ we can write $B = PB + (I - P)B$, where $PB \in \mathfrak{B}_1$ and $(I - P)B \in \mathfrak{B}_2$. This decomposition is obviously unique and therefore $\mathfrak{B}(X) = \mathfrak{B}_1 \oplus \mathfrak{B}_2$.

Lemma 2. Let X, Y_1, \mathfrak{B}_i be as in Lemma 1, let Z_i, $i = 1, 2$ be closed linear subspaces of X^* such that $X^* = Z_1 \oplus Z_2$. Let \mathfrak{A}_i be the subset of \mathfrak{B}_i whose elements are the operators in \mathfrak{B}_i whose adjoints have range contained in Z_i, $i = 1, 2$. Then \mathfrak{A}_i is a closed left ideal in \mathfrak{B}_i and $\mathfrak{B}_i = \mathfrak{A}_1 \oplus \mathfrak{A}_2$.

Proof. The proof that \mathfrak{A}_i is a closed left ideal is similar to the argument in Lemma 1 and hence is omitted. Let P be the continuous projection of X onto Y_1 with null space Y_2 and Q the continuous projection of X^* onto Z_1 with null space Z_2. Note first that \mathfrak{A}_i, $i = 1, 2$, are closed subspaces of \mathfrak{B}_i and that if $A_i \in \mathfrak{A}_i$, $i = 1, 2$, we have $\|A_i\| = \|Q(A_1 + A_2)\| \leq \|Q\| \|A_1 + A_2\|$. It follows from Theorem 2.1 [3] that $\mathfrak{A}_1 \oplus \mathfrak{A}_2$ is a closed subalgebra of \mathfrak{B}_1. Next, we show that $\mathfrak{A}_1 \oplus \mathfrak{A}_2$ is dense in \mathfrak{B}_1. A one dimensional operator in \mathfrak{B}_i is of the form $y \otimes x^*$ with $y \in Y$, $x^* \in X^*$ and can be written $y \otimes x^* = y \otimes Qx^* + y \otimes (I - Q)x^*$, with $y \otimes Qx^* \in \mathfrak{A}_1$ and $y \otimes (I - Q)x^* \in \mathfrak{A}_2$. It follows that every operator of finite rank in \mathfrak{B}_i can be written as the sum of an operator in \mathfrak{A}_1 and an operator in \mathfrak{A}_2. Now, if $B \in \mathfrak{B}_1 \subset \mathfrak{B}(X)$, there exists a sequence F_n of operators of finite rank on X such that $F_n \to B$ in
the norm topology. Since P is a continuous projection on Y_1 and Range $B \subset Y_1$ we also have $PF_n \to B$ where PF_n is an operator of finite rank belonging to \mathcal{B}_1 and therefore $PF_n \subset \mathcal{A}_1 \oplus \mathcal{A}_2$. It follows that $\mathcal{A}_1 \oplus \mathcal{A}_2$ is dense in \mathcal{B}_1 and therefore $\mathcal{A}_1 \oplus \mathcal{A}_2 = \mathcal{B}_1$.

Lemma 3. If X is quasi-reflexive of order n then there exists Banach spaces X_1 and X_2 and an equivalent norm for X such that $X_1^* = X_1$, $X_2^* = X$ and

\begin{align*}
X^* &= \pi_1X_1 \oplus (\pi_2X_2)^+, \\
X &= \pi_2X_2 \oplus V^+, \\
X_1 &= X_2^* = V \oplus U,
\end{align*}

where π_i is the canonical embedding of X_i in X_i^{**}, $i=1, 2$, and where U, V^+ and $(\pi_2X_2)^+$ are all (finite) n-dimensional.

Proof. Since X is quasi-reflexive of order n, it follows from Theorem 3.5 of [2] that X_1, X_2 exist such that $X_1^* = X_1$ and $X_2^* = X$ and such that both X_1 and X_2 are quasi-reflexive of order n. The direct sum decompositions follow at once from Theorem 3.3 and the proof of Theorem 3.1 of [2].

4. **Theorem.** Let X be a quasi-reflexive space. Then $\mathcal{B}(X) = \mathcal{A}_1 \oplus \mathcal{B}_1 \oplus \mathcal{B}_2 \oplus \mathcal{B}_3$ where \mathcal{A}_1 is a right annihilator algebra and \mathcal{B}_2 a right ideal, which annihilates \mathcal{A}_1 on the right; $\mathcal{A}_1 \oplus \mathcal{B}_1$ is a left annihilator algebra and \mathcal{B}_3 a nilpotent algebra which annihilates $\mathcal{A}_1 \oplus \mathcal{B}_1$ on the left. Moreover the following are equivalent:

(a) \mathcal{A}_1 is a left annihilator algebra,
(b) $\mathcal{B}_i = (0)$, $i=1, 2, 3$,
(c) X is reflexive.

Proof. By Lemma 3 there exist Banach spaces X_1 and X_2 such that

\begin{align*}
X^* &= \pi_1V \oplus \pi_1U \oplus (\pi_2X_2)^+ \quad \text{and} \quad X = \pi_2X_2 \oplus V^+.
\end{align*}

Let \mathcal{A}_1 denote the subalgebra of $\mathcal{B}(X)$ whose elements are the operators in $\mathcal{B}(X)$ with range in π_2X_2 and which have adjoints with range in π_1V; let \mathcal{B}_1 denote the subalgebra of $\mathcal{B}(X)$ whose elements are those operators in $\mathcal{B}(X)$ with range in π_2X_2, which have adjoints with range in π_1U; let \mathcal{B}_2 denote the right ideal of $\mathcal{B}(X)$ whose elements are the operators in $\mathcal{B}(X)$ with range in V^+; and let \mathcal{B}_3 be the subalgebra of $\mathcal{B}(X)$ consisting of those operators with range in π_2X_2 and whose adjoints have range in $(\pi_2X_2)^+$. Then an application of Lemma 1 and Lemma 2 yields

$$\mathcal{B}(X) = \mathcal{A}_1 \oplus \mathcal{B}_1 \oplus \mathcal{B}_2 \oplus \mathcal{B}_3.$$
Next we will show that \mathfrak{A} is a right annihilator algebra. By the proof of Theorem 3.1 [2] we see that there exists an isomorphism α of $\pi_2 X_2$ onto V^* such that $\alpha(\pi_2 x_2)(v) = v(x_2)$ for all $x_2 \in X_2$, $v \in V$.

We establish next an isomorphism β of \mathfrak{A} onto $(\mathcal{B}(V))^*$. For $A \in \mathfrak{A}$ define $\beta A = \alpha A \alpha^{-1}$. If we let $T \in \mathcal{B}(V)$ be defined by $Tv = \pi^{-1} A^* \pi_1 v$ for all $v \in V$, then

$$(T^* v^*)(v) = v^* (\pi^{-1} A^* \pi_1 v) = (A^* \pi_1 v)(\alpha^{-1} v^*) = (\alpha A \alpha^{-1} v^*)(v),$$

and it follows that $\beta A = T^*$ and hence $\beta A \in (\mathcal{B}(V))^*$.

The mapping β is onto since if $T^* \in (\mathcal{B}(V))^*$ we can define $A \in \mathcal{B}(X)$ by $A = \alpha^{-1} T^* \alpha P$, where P is the continuous projection of X onto $\pi_2 X_2$, with null space V^+; clearly $A \subset \pi_2 X_2$, and $\beta A = T^* \alpha P \alpha^{-1} = T^*$. To show that Range $A^* \subset \pi_1 V$ we proceed as follows. Suppose first that T is a one-dimensional operator, then $T = \nu \otimes \nu$, where ν is the canonical embedding of V into V^*. We then have $A = \alpha^{-1} (\nu \otimes \nu) \alpha P$ and for any $x^* \in X^*$, $x \in X$ we obtain $A x^*(x) = x^* [\alpha^{-1} (\nu \otimes \nu) \alpha P x] = \nu(\alpha P x) x^* (\alpha^{-1} \nu^*) = (P x)(x^* (\alpha^{-1} \nu^*))$ using the definition of α. Now $x = P x + (I - P) x$ and $(I - P) x \in V^+$, so $\pi_v(x) = x(v) = P x(v)$, and hence $A x^* = x^* (\alpha^{-1} \nu^*) \pi_v \in \pi_1 V$. This shows that Range $A^* \subset \pi_1 V$ in case T is a one-dimensional operator. Similarly if T is of finite rank we obtain Range $A^* \subset \pi_1 V$. Finally, if T is arbitrary in $\mathcal{B}(V)$, there exists a sequence T_n of operators of finite rank such that $T_n \to T$. Let $A_n = \alpha^{-1} T_n^* \alpha P$ and $A = \alpha^{-1} T^* \alpha P$. Since $T_n \to T$, since $\pi_1 V$ is a closed subspace of X^* and since Range $A_n^* \subset \pi_1 V$ for each n, it follows that $A_n \to A$ and Range $A^* \subset \pi_1 V$. The mapping β is therefore onto $(\mathcal{B}(V))^*$.

It is clear furthermore that β is one to one, linear, bicontinuous and preserves multiplication, i.e., $\beta(AB) = (\beta A)(\beta B)$ for all $A, B \in \mathfrak{A}$. We can thus identify \mathfrak{A} and $(\mathcal{B}(V))^*$. Now, $\mathcal{B}(V)$ is a left annihilator algebra [4, p. 107] so $(\mathcal{B}(V))^*$ is a right annihilator algebra. It follows that \mathfrak{A} is a right annihilator algebra.

Next, if $A \in \mathfrak{A}$ and $B \in \mathfrak{B}$ then for any $x^* \in X^*$ and $x \in X$ we have $((AB)^* x^*) x = (A^* x^*) (B x) = 0$, since $A^* x^* \in \pi_1 V$ and $B x \in V^+$. Therefore $(AB)^* = 0$ so that $A B = 0$, hence \mathfrak{B} annihilates \mathfrak{A} on the right.

We consider next $\mathfrak{A} \oplus \mathfrak{B}$ which is the subalgebra consisting of those operators in $\mathcal{B}(X)$ with range in $\pi_2 X_2$ and whose adjoints have range in $\pi_1 X_1$. In order to show that $\mathfrak{A} \oplus \mathfrak{B}$ is a left annihilator algebra it suffices to notice that $\mathfrak{A} \oplus \mathfrak{B} = (\mathcal{B}(X_2))^*$. This equality follows from the fact that if $T \in \mathcal{B}(X_2)$ and $T = x_2 \otimes x_1$ with $x_2 \in X_2$ and $x_1 \in X_1 = X_1^*$.
then $T^{**} = \pi_{2X_3} \otimes \pi_{X_1} \in A_1 \oplus B_1$, so that $A_1 \oplus B_1$ and $(B(X_3))^{**}$ contain the same one-dimensional operators.

That B_3 annihilates $A_1 \oplus B_1$ on the left follows from the fact that if $A \in A_1 \oplus B_1$, $B \in B_3$, $x^* \in X^*$ and $x \in X$ we have $((BA)^* x^*) (x) = (B^* x^*) (Ax) = 0$, since $B^* x^* \in (\pi_2 X_2)^+$ and $Ax \in \pi_2 X_2$, so that $(BA)^* = 0$ and therefore $BA = 0$. The same conclusion holds if $A \in B_3$, B_3 is therefore nilpotent.

Finally we notice that if A_1 is a left annihilator algebra it is an annihilator algebra and so are $(B(V))^*$ and $B(V)$, consequently by [1] V is a reflexive Banach space and so is V^*. But V^* is isomorphic with X_2 by proof of Theorem 3.1 [2]; so X_2 is reflexive and by Lemma 3 we conclude that X is reflexive. If X is reflexive then $U = V^+ = (\pi_2 X_2)^+ = (0)$ which implies $B_i = (0)$ for $i = 1, 2$ and 3.

If $B_i = (0)$ this implies either $U = (0)$ or $V^+ = (0)$ or $(\pi_2 X_2)^+ = (0)$. But by Lemma 3 either one of these inequalities implies the other two so that $B_i = (0)$ and $A_1 \oplus B_1 = A_1$, and hence A_1 is a left annihilator algebra.

Bibliography

The University of Saskatchewan