NOTE ON STAR-SHAPED SETS

A. KOSINSKI

1. The aim of this note is to prove that if M is a compact subset of E^n and for some m every m-dimensional hyperplane through a fixed point $p \in E^n$ intersects M along a nonempty acyclic set, $1 \leq m \leq n-1$, then M is star-shaped with respect to p, i.e., if $a \in M$ then the segment \overline{pa} is contained in M.

This theorem is a generalization of a theorem of Aumann [1]. We gave recently a proof of Aumann's theorem based on the theory of multivalent mappings (see [3]); the present proof follows essentially the same line. The topological lemma on which it is based is susceptible to further generalizations; however, we give it here only in its simplest and easily proved case which is needed for the proof of the theorem about star-shaped sets.

I have the pleasure to acknowledge my indebtedness to Dr. M. W. Hirsch for valuable suggestions.

2. $H_n(X)$ will denote the nth Čech homology group of the space X with the group \mathbb{Z}_2 of integers mod 2 as the group of coefficients. We will say that X is acyclic if X is connected and $H_n(X) = 0$, $n = 1, 2, 3, \ldots$.

Let X be a compact metric space and let $\Phi: X \to 2^Y$ be an upper semi-continuous mapping of X into the space 2^Y of all nonempty compact subsets of a space F. The triple $S = \{X, Y, \Phi\}$ will be called a family [2]. The set X will be called the basis of S, the sets $\Phi(x)$—the elements of S, the set $\bigcup_{x \in X} \Phi(x) \subset Y$—the field of S. The field will be also denoted by $\Phi(X)$. A family S is said to be acyclic if all its elements are acyclic.

E^n will denote the Euclidean space, D^n the unit n-ball in E^n with center in the origin of coordinates o, S^{n-1} will denote the boundary of D^n. $E = E^k$, $2 \leq k \leq n-1$, will stand for a fixed k-dimensional Euclidean subspace of E^n, $E' = E^{n-k}$ will be the orthogonal complement of E in E^n.

For a fixed r, $1 \leq r \leq k-1$, $G_{k,r}$ will denote the grassmannian of (unoriented) r-planes in E^k. For every plane $x \subset E$ let $H(x)$ be the plane in E^n spanned by x and E'. If x runs through $G_{k,r}$ then the correspondence $x \to H(x)$ is a one-to-one correspondence between $G_{k,r}$ and the set of all $(n-k+r)$-planes in E^n containing E'.

Received by the editors November 21, 1961.

1. This work was supported by the National Science Foundation research grant NSF G-18919.
2.1. Lemma. Let \(\mathcal{F} = \{ G_k, E^n, \Phi \} \) be an acyclic family satisfying
\[
(H(x) \cap S^{n-1}) \subseteq \Phi(x)
\]
for every \(x \in G_k \). Then \(D^n \subseteq \Phi(G_k) \).

Proof. For \(r = 1 \) the lemma was proved in [2, 4a]. (The sentence
in parentheses on the bottom of p. 295 in [2] is incorrect; the proof
however is correct, provided \(m = 2 \).
To prove it in the general case we consider a fixed \((n-k+r-1)\)-plane \(E'' \) in \(E^n \) containing \(E' \). Let
\[
G' = \{ x \in G_k : H(x) \supset E'' \}
\]
Since the family \(\mathcal{F} \) restricted to \(G' \) is a family with \(G_{k-r+1,r} \) as basis,
we infer that \(\Phi(G') \supset D^n \). Since \(\Phi(G_k) \supset \Phi(G') \), this proves the lemma.

2.2. Lemma. Let \(\mathcal{F} = \{ G_k, E^n, \Phi \} \) be an acyclic family satisfying
\[
(E' \cap S^{n-1}) \subseteq \Phi(x) \subseteq H(x)
\]
for every \(x \in G_k \). Then \((E' \cap D^n) \subseteq \Phi(G_k) \).

Proof. We will consider the grassmannian \(G_{k-k-r} \) of all \((k-r)\)-planes in \(E \). For every \(x \in G_{k-k-r} \), \(x^* \) will
denote the orthogonal complement of \(x \) in \(E \), and \(S(x) = x \cap S^{n-1} \). For any two sets \(A, B \subseteq E^n \) let \(A \ast B \) be
the union of all segments \(ab, a \in A, b \in B \). It is obvious that if \(B \subseteq H(x^*) \) then \(S(x) \ast B \) is homeomorphic to
the join of \(S(x) \) with \(B \). In particular, this implies
(i) If \(B \) is compact and acyclic and \(B \subseteq H(x^*) \) then \(S(x) \ast B \) is
also compact and acyclic.

Let \(h : E^n \to E^n \) be a homeomorphism of \(E^n \) onto itself satisfying the
following conditions
(ii) \(h(E' \cap D^n) \subseteq D^n \);
(iii) For every \(x \in G_{k-k-r} \),
\[
h(S(x) \ast (E' \cap S^{n-1})) = H(x) \cap S^{n-1}
\]
It is easy to construct such a homeomorphism.
Now, for every \(x \in G_{k-k-r} \) we put \(\Phi_1(x) = h(S(x) \ast \Phi(x^*)) \). It follows
from (i) that \(\mathcal{F}_1 = \{ G_{k-k-r}, E^n, \Phi_1 \} \) is an acyclic family. Moreover,
since \(\Phi(x^*) \supset E' \cap S^{n-1} \) we have \(S(x) \ast \Phi(x^*) \supset S(x) \ast (E' \cap S^{n-1}) \) and
(iii) implies \(\Phi_1(x) \supset H(x) \cap S^{n-1} \). Therefore the family \(\mathcal{F}_1 \) satisfies the
conditions of Lemma 2.1 and we infer that
(iv) \(D^n \subseteq \Phi_1(G_{k-k-r}) \).
Let \(y \in E' \cap D^n \). By (ii) and (iv) \(h(y) \in \Phi_1(x) \) for some \(x \in G_{k-k-r} \).
Therefore \(y \in h^{-1}(\Phi_1(x)) = S(x) \ast \Phi(x^*) \). Since \(S(x) \ast \Phi(x^*) \cap E' = \Phi(x^*) \cap E' \) it follows that \(y \in \Phi(x^*) \). Thus \((E' \cap D^n) \subseteq \Phi(G_k) \)
which completes the proof.

2.3. Remark. Actually, a much stronger lemma holds. Namely, if \(\mathcal{F} = \{ G_k, E^n, \Phi \} \) is an acyclic family satisfying \((E' \cap S^{n-1}) \subseteq \Phi(x) \),
then for some \(x \in G_k, \Phi(x) \cap H^*(x) \neq 0 \). This implies easily 2.2 and
may be proved using methods from [3].
3. **Theorem.** Let $M \subset E^n$ be a compact set, and m a natural number, $1 \leq m \leq n - 1$. If there exists a point $p \in E^n$ such that for every m-plane H through p, $H \cap M$ is acyclic then M is star-shaped with respect to p.

Proof. We remark first that it follows from [3, 2.1] that $p \in M$.

Now let $a \in M$, $a \neq p$, and L be the line through a and p.

Suppose first that $m = 1$. Then $a, p \in L \cap M$ and $L \cap M$ is connected. Thus $ap \subset L \cap M$, which was to be proved.

Now let $2 \leq m \leq n - 1$. Let S be the $(n - 1)$-sphere in E^n such that ap is its diameter, let E be the $(n - 1)$-plane in E^n orthogonal to L and passing through the midpoint of ap.

For every $(m - 1)$-plane x in E we define $\Phi(x) = H(x) \cap M$, where $H(x)$ is as before the m-plane in E^n spanned by x and L. Thus $H(x)$ passes through p and $\Phi(x)$ is acyclic. Therefore $\mathcal{F} = \{G_{a-1,m-1}, E^n, \Phi\}$ is an acyclic family. Obviously, $S \cap L = \{a, p\} \subset \Phi(x) \subset H(x)$. Hence \mathcal{F} satisfies all conditions from Lemma 2.2 (with $k = n - 1$, $r = m - 1$) and it follows that $ap \subset \bigcup \Phi(x) \subset M$. This completes the proof of the theorem.

References

University of California, Berkeley