THE ACTION OF Γ_{2n} ON $(n-1)$-CONNECTED 2n-MANIFOLDS

C. T. C. WALL

This note makes the results of [1] more precise in certain cases. We assume the notations of that paper.

Theorem. If $n = 3, 5, 6, 7 \pmod{8}$, T is a 2n-sphere representing $x \in \Gamma_{2n}$, M is a closed $(n-1)$-connected 2n-manifold, and if there is an orientation preserving diffeomorphism h of $M \# T$ on M, then $x = 0$.

It is known that Γ_m may be interpreted both as the quotient $\text{Diff}(S^{m-1})/\text{i}^*\text{Diff}(D^m)$ and as the group of differential structures on S^m ($m \neq 4$). The two interpretations are connected, for given a diffeomorphism f of S^{m-1}, representing x, we may glue two copies of D^m using it, and derive a differential structure on S^m. We shall reformulate this. We may suppose without loss of generality that f keeps a disc D^{m-1} fixed. Form a manifold L from $S^{m-1} \times I$ by identifying each $(P, 1)$ with $(fP, 0)$. Then L contains $D^{m-1} \times S^1$. Make a spherical modification, replacing this by $S^{m-2} \times D^2$.

Lemma. The resulting manifold is a sphere, representing x.

Proof. We cut the whole figure in half, cutting I at 0 and 1/2. L falls into two pieces, of which one is $(S^{m-1} \times S^1_+)$, where the modification replaces $D^{m-1} \times S^1_+$ by $S^{m-2} \times D^2_+$ (the subscript $+$ indicates that the second coordinate is non-negative). This yields a disc; similarly for the other half. These are now to be glued by a diffeomorphism of the boundary which is the identity except on $D^{m-1} \times 1$, where it agrees with f. Thus it is equivalent to f. Hence we get a sphere, representing x.

We now prove the theorem. The diffeomorphism h may be supposed fixed on a disc, and then induces a diffeomorphism g of its complement N (whose boundary is S^{2n-1}) on itself. Here we are thinking of the disc as used to form the connected sum $M \# T$, and so $g|\partial N = f$ represents x. Form V from $N \times I$ by identifying $(P, 1)$ with $(gP, 0)$. Again we may suppose f fixed on a disc, and so $D^{2n-1} \times S^1$ contained in ∂V. Form W by attaching along it $D^{2n-1} \times D^2$. By the lemma, ∂W represents x. It is at once verified that W is $(n-1)$-connected with M, and in view of our hypothesis on n, it follows that

Received by the editors January 8, 1962.

943
W is n-parallelisable. Now by the main theorem of [2], ∂W bounds a contractible manifold, and so represents the zero element of Γ_{2n}.

REFERENCES

1. C. T. C. Wall, Classification of $(n-1)$-connected $2n$-manifolds, Ann. of Math. 75 (1962), 163–189.

Trinity College, Cambridge

THE COEFFICIENTS IN THE EXPANSION OF CERTAIN PRODUCTS

L. CARLITZ

1. The identities

\[
\prod_{n=0}^{\infty} (1 - p^n x)^{-1} = \sum_{n=0}^{\infty} \frac{x^n}{(1 - p)(1 - p^2) \cdots (1 - p^n)},
\]

\[
\prod_{n=0}^{\infty} (1 - p^n x) = \sum_{n=0}^{\infty} \frac{(-1)^n p^{n(n-1)/2} x^n}{(1 - p)(1 - p^2) \cdots (1 - p^n)},
\]

where $|p| < 1$, are well known. The more general products

\[
\prod_{m,n=0}^{\infty} (1 - p^m q^n x)^{-1}, \quad \prod_{m,n=0}^{\infty} (1 - p^m q^n x) \quad (|p| < 1, |q| < 1)
\]

have been discussed in [1; 2].

In the present note we consider the products

\[
\prod_{n=0}^{\infty} (1 - p^n x - q^n y)^{-1}, \quad \prod_{n=0}^{\infty} (1 - p^n x - p^n y) \quad (|p| < 1, |q| < 1)
\]

Put

\[
F(x, y) = \prod_{n=0}^{\infty} (1 - p^n x - q^n y)^{-1} = \sum_{r,s=0}^{\infty} A_{rs} x^r y^s,
\]

where $A_{rs} = A_{rs}(p, q)$ is independent of x and y. It follows from (4) that

Presented to the Society, November 10, 1961; received by the editors November 7, 1961.

1 Supported in part by National Science Foundation grant G-16485.