lows from our lemma by much the same sort of argument that pro-
duced our basic theorem.

REFERENCES

1. E. A. Coddington and N. Levinson, Theory of ordinary differential equations,

New York, 1956.

3. J. LaSalle, Uniqueness theorems and successive approximations, Ann. of Math.
50 (1949), 722–730.

HARPUR COLLEGE

UNCOUNTABLY MANY NONISOMORPHIC NILPOTENT LIE ALGEBRAS

CHONG-YUN CHAO

Throughout this note, L denotes a Lie algebra over the real number field R. We shall define L^i and L_i inductively. $L = L^0 = L_0$, $L^i = [L^{i-1}, L^{i-1}]$, and $L_i = [L, L_{i-1}]$ for all integers $i \geq 1$. Thus, L^i is the space of all finite sums $\sum [x, y]$, $x, y \in L^{i-1}$. Similarly, L_i is the space of all finite sums $\sum [x, y]$, $x \in L$ and $y \in L_{i-1}$. If $L^r = 0$ and $L^{r-1} \neq 0$, L is said to be solvable of index r. If $L_i = 0$ and $L_{i-1} \neq 0$, L is said to be nilpotent of length t.

DEFINITION. Let F be a subfield of R. A Lie algebra L over R is said to be an F-algebra if its structure constants with respect to some basis of L lie in F.

Malcev [1] showed that for each integer $n \geq 16$ there is a nilpotent Lie algebra of length 2 and dimension n which is not a rational algebra. The purpose of this note is to prove the following theorem which contains an improvement of Malcev's result:

THEOREM. There exist uncountably many nonisomorphic nilpotent Lie algebras of length 2 for any given dimension $N \geq 10$.

Following from the theorem we can easily show:

COROLLARY 1. There exist uncountably many solvable not nilpotent Lie algebras of index 3 for any given dimension $M \geq 11$.

Received by the editors November 13, 1961.

1 This is a portion of my thesis submitted to the University of Michigan. I am
deeply grateful to Professor H. Samelson for his guidance and assistance. This work
was supported by the contract AF 49(648)—104 and Lotta B. Backus scholarship.
Let E be a subfield of R, let m, n be two natural numbers, and let c_{jk}, $i=1, 2, \ldots, n$, $j, k=1, 2, \ldots, m$, be real numbers such that $c_{jk} = -c_{kj}$. Also let L be a Lie algebra over R defined by a basis $(x_1, \ldots, x_m, y_1, \ldots, y_n)$ with products $[x_j, x_k] = \sum_{l=1}^m c_{jl} y_l$ for $j, k=1, 2, \ldots, m$, and all other products zero, so that L is nilpotent of length ≤ 2.

Lemma. If the numbers c_{jk}, $1 \leq i \leq n$, $1 \leq j < k \leq m$, are algebraically independent over E, and if $(n/2)(m^2 - m) > m^2 + n^2$, then L is not an E-algebra.

Proof. We first note that $(n/2)(m^2 - m) > m^2 + n^2$ implies $(1/2)(m^2 - m) > n$. Any n different elements $[x_j, x_k], j < k$, of L_1 are linearly independent, since the determinant formed by c_{jk} involved cannot be zero by the algebraic independence of all c_{jk}. It follows that L_1 is generated by y_1, y_2, \ldots, y_n, denoted by $L_1 = \{(y_1, y_2, \ldots, y_n)\}$, since for any $x \in L_1$ there exist u_i, v_i such that $x = \sum_i [u_i, v_i]$ which is a linear combination of y_i’s. We also note that the center of L is exactly L_1; let x be any element of the center, then $x = \sum_{j=1}^m a_j x_j + \sum_{i=1}^n b_i y_i$, and $0 = [x, x_k] = \sum_{j=1}^m a_j \sum_{i=1}^n c_{jk} y_i$ for $k = 1, 2, \ldots, m$, By linear independence of the $\{y_i\}$, we have $\sum_{j=1}^m a_j c_{jk} = 0$ for $i = 1, 2, \ldots, n$, and $k = 1, 2, \ldots, m$, i.e., there are $n \cdot m$ equations and m unknowns. By the algebraic independence of all c_{jk}, the rank of the coefficient matrix in the system of homogeneous equations is equal to m. Hence, we have $a_1 = a_2 = \cdots = a_m = 0$. Consequently, $x = \sum_{i=1}^n b_i y_i$ and the center is L_1, and L is of length 2.

Suppose now that L is an E-algebra with basis $(z_1, \ldots, z_m, z_{m+1}, \ldots, z_{m+n})$ and structure constants d_{ij}^k, $1 \leq i, j, k \leq m+n$, lying in E. We can assume that (z_1, \ldots, z_m) are independent modulo L_1, i.e., they span a complement C of L_1 in L. We can write $z_{m+i} = v_i + t_i$ with $v_i \in C$ and $t_i \in L_1$ for $i = 1, 2, \ldots, n$. Clearly, $(z_1, z_2, \ldots, z_m, t_1, \ldots, t_n)$ is still a basis for L. We have

$$[z_i, z_j] = \sum_{r=1}^m d_{ij}^r z_r + \sum_{s=m+1}^{m+n} d_{ij}^s z_{s+m} + \sum_{s=m+1}^{m+n} d_{ij}^s z_{s-m},$$

for $1 \leq i, j \leq m$. But since $[z_i, z_j] \subseteq L_1$, the first two sums, which are in C, must be zero. Hence we have

$$[z_i, z_j] = \sum_{r=1}^n d_{ij}^{m+r} t_i, \quad \text{for} \quad i, j = 1, 2, \ldots, m.$$

These equations describe the multiplication in L in the basis $(z_1, \ldots, z_m, t_1, \ldots, t_n)$; the structure constants are part of the structure constants for the basis $(z_1, \ldots, z_m, z_{m+1}, \ldots, z_{m+n})$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We note that \(((x_1, \cdots, x_m))\) also forms a complement of \(L_1\) in \(L\) say \(C\). It follows that we can replace each \(z_i\) by an element \(s_i\) such that \(s_i - z_i \in L_1\) and \(s_i \in C\). Since \(L_1\) is the center of \(L\), the structure constants for the basis \((z_1, \cdots, z_m, t_1, \cdots, t_n)\) are the same as for the basis \((s_1, \cdots, s_m, t_1, \cdots, t_n)\) above.

The set of vectors \(\{s_1, \cdots, s_m\}\) is of course a basis for \(C\), and, therefore, we have \(s_i = \sum_{p=1}^{m} a_{ip} x_p, i = 1, \cdots, m\), where \(A = (a_{ip})\) is a nonsingular matrix. Similarly, \(t_g = \sum_{r=1}^{n} b_{gr} y_r, g = 1, \cdots, n\), with nonsingular matrix \(B = (b_{gr})\). Substituting into \([s_i, s_j] = \sum_{u=1}^{n} d_{ij} t_u, 1 \leq i, j \leq m\), we obtain, by linear independence,

\[
\sum_p \sum_r a_{ip} a_{j\delta} c_{pr} = \sum_u d_{ij} b_{ur},
\]

for fixed \(i, j\), and \(r\).

This means, with \(a_{ij} = (A^{-1})_{ij}\), that

\[
c_{pr} = \sum_{i} \sum_{j} \sum_{u} d_{ij} b_{ur} a_{pi} a_{qj}.
\]

These equations imply that the \(c_{pr}\) lie in the field \(E(a_{ip}, b_{ur})\), but this field has degree of transcendency over \(E\) at most \(m^2 + n^2\) which is a contradiction. Hence, \(L\) is not an \(E\)-algebra.

The smallest dimension to which this applies is 10 with \(m = 6\) and \(n = 4\). In fact, the lemma applies to any dimension \(N \geq 10\), because when \(N \geq 10, N^2 - 10N + 8 > 0\) holds, implying that \(n(m^2 - m)/2 > m^2 + n^2\) holds for \(n = 4\) and \(m = N - 4\).

Now the proof of the theorem: It is well known that there exists a set, \(S\), of uncountably many real numbers which are algebraically independent over the rational number field \(Q\). With \(n = 4\) and \(m = N - 4\), we divide \(S\) into disjoint subsets \(\{c_{ik}\}\) (the Greek index distinguishes the various subsets), each of which is restricted to values of \(j\) and \(k\) such that \(j < k\) and \(c_{jk} = -c_{kj}\). Write \((L)_\alpha = ((x_1, \cdots, x_m, y_1, \cdots, y_4))\) with products \([x_j, x_k] = \sum_{i=1}^{4} c_{jk} y_i, j, k = 1, 2, \cdots, m\), and all other products zero. There are still uncountably many such subsets \(\{c_{jk}\}\) since each \(\{c_{jk}\}\) is finite. Consequently, there are uncountably many such Lie algebras \((L)_\alpha\). We claim that any two \((L)_\alpha\) and \((L)_{\alpha'}\) are nonisomorphic. Since \(c_{jk}\) are algebraically independent over \(Q(\{c_{jk}\}_{\alpha'})\), apply the lemma with \(E = Q(\{c_{jk}\}_{\alpha'})\).

Now the proof of Corollary 1: In the proof of the theorem we have seen that for each \(\alpha\), \((L)_{\alpha} = ((x_1, \cdots, x_{N-4}, y_1, \cdots, y_4))\), with \([x_j, x_k] = \sum_{i=1}^{4} c_{jk} y_i\) for \(j, k = 1, \cdots, N - 4\) where \(N \geq 10\), and all
other products zero, is a nilpotent Lie algebra of dimension N and length 2. Let $(L')_a = ((x_1, \cdots, x_{N-4}, y_1, \cdots, y_4, z_a))$ where the multiplications of x_j's and y_i's are defined as same as in L and $[z_a, x_j] = x_j$, $[z_a, y_i] = 2y_i$, for $j = 1, \cdots, N-4; i = 1, \cdots, 4$ and $N \geq 10$. Then clearly, $(L)_a$ is a solvable not nilpotent Lie algebra of dimension $M = N+1 \geq 11$. Any two such Lie algebra $(L')_a$ and $(L')_a'$ are clearly nonisomorphic because by the theorem their commutators are non-isomorphic.

Corollary 2. There are uncountably many nonisomorphic non-rational nilpotent Lie algebras of length 2 for any given dimension $N \geq 10$.

Remarks. We note that the uncountability of nonisomorphic solvable Lie algebras is quite different from the case of semisimple Lie algebras where in each dimension there are only a finite number of nonisomorphic ones.

Bibliography