W^*-ALGEBRAS WITH A SINGLE GENERATOR

CARL PEARCY

In [4] the author set forth a complete set of unitary invariants for a certain class of operators on Hilbert space. The operators considered were exactly those operators which generate a finite W^*-algebra of type I in the terminology of [2]. One immediately wants to know some nontrivial examples of such operators, and Brown provided several examples in [1]. (Nontrivial here means non-normal operator on infinite-dimensional Hilbert space.) It is the purpose of this note to show that there exists an abundance of such operators, in the sense of the following theorem.

Theorem. If R is any W^*-algebra of operators acting on a separable Hilbert space, and R is of type I, then there exists an operator $A \in R$ which generates R (in the sense that R is the smallest W^*-algebra containing A).

We first prove the following lemma.

Lemma. If n is any cardinal number satisfying $1 \leq n \leq \aleph_0$, and \mathcal{H} is any n-dimensional Hilbert space, then there is an operator A on \mathcal{H} such that the W^*-algebra generated by A is $\mathfrak{B}(\mathcal{H})$, the algebra of all bounded operators on \mathcal{H}.

Proof. Whether n is finite or infinite, it clearly suffices to exhibit an operator A which has no nontrivial reducing subspace. In case n is finite, take A to be any operator with n distinct eigenvalues and with the property that no two eigenvectors corresponding to different eigenvalues are orthogonal. In case $n = \aleph_0$, choose an orthonormal basis $\{x_i\}$, $i = 1, 2, \cdots$, for \mathcal{H} and define A by setting $Ax_i = x_{i+1}$, $i = 1, 2, \cdots$. That A has no nontrivial reducing subspace is proved on page 356 of [5].

We now prove the theorem, using von Neumann's result in [3] that any abelian W^*-algebra on a separable Hilbert space has a single Hermitian generator and results of Dixmier in [2].

Proof of the Theorem. One knows (see [1] for example) that R is a direct sum $\sum_{n \in \mathbb{N}} \mathfrak{H}_n$ where each \mathfrak{H}_n is an n-homogeneous algebra and \mathbb{N} is some set of cardinal numbers bounded above by \aleph_0. We suppose first that the theorem is known for homogeneous algebras, and return to the proof of this case later. For each $n \in \mathbb{N}$, let B_n generate \mathfrak{H}_n, and arrange it so that the B_n are uniformly bounded in norm.

Received by the editors November 24, 1961.
Then $B = \sum_{n \in \mathbb{N}} B_n \subset R$. Let C be a generator for the center of R. Then one sees immediately that the W^*-algebra generated by the pair (B, C) contains each homogeneous algebra R_n, and therefore must be R. We now obtain a single operator generating R as follows. Write $B = H + iK$, H and K Hermitian. Let $A_1 = A_1^*$ generate the same abelian W^*-algebra as the pair (H, C) and let $A_2 = A_2^*$ generate the same algebra as (K, C). Then take $A = A_1 + iA_2$.

We return now to deal with the homogeneous case. Let R be an n-homogeneous W^*-algebra ($n \leq \aleph_0$), and let I, the unit of R, be the identity operator on the separable Hilbert space \mathcal{K}. Then I can be written as $I = \sum_{i=1}^n E_i$, where the E_i are mutually orthogonal, equivalent, abelian projections in R. Let $\mathcal{K}_1 = E_1(\mathcal{K})$, let \mathcal{K}_2 be a Hilbert space of dimension n, and let $\mathcal{K} = \mathcal{K}_1 \otimes \mathcal{K}_2$ (the tensor product of \mathcal{K}_1 with \mathcal{K}_2). It follows from Proposition 5, page 27 of [2], that R is unitarily isomorphic to the (tensor product) W^*-algebra $R_1 = E_1RE_1 \otimes \mathcal{L}(\mathcal{K}_2)$ of operators acting on the Hilbert space \mathcal{K}, and thus it suffices to obtain a single generator for R_1. From von Neumann’s result in [3] we obtain a single generator C for the abelian algebra E_1RE_1, and from the lemma we obtain a single generator B for $E_1 \mathcal{K}_1 \otimes \mathcal{L}(\mathcal{K}_2)$. Let $G = C \otimes I_{\mathcal{K}_2}$, and let $D = I_{\mathcal{K}_1} \otimes B$. It follows from Proposition 6, page 28 of [2], that the pair (G, D) generates R_1, and the argument is completed as above.

Remarks. (1) It is immediate from Exercise 3, page 119 of [2], that one cannot hope to extend this result to algebras of type I on nonseparable spaces.

(2) Is it the case that every W^*-algebra (regardless of type) acting on a separable space has a single generator?

Bibliography