Sums of Distinct Unit Fractions

Paul Erdős and Sherman Stein

We shall consider the representation of numbers as the sum of distinct unit fractions; in particular we will answer two questions recently raised by Herbert S. Wilf.

A sequence of positive integers \(S = \{n_1, n_2, \ldots \} \) with \(n_1 < n_2 < \ldots \) is an \(R \)-basis if every positive integer is the sum of distinct reciprocals of finitely many integers of \(S \). In Research Problem 6 [1, p. 457], Herbert S. Wilf raises several questions about \(R \)-bases, including:

Does an \(R \)-basis necessarily have a positive density? If \(S \) consists of all positive integers and \(f(n) \) is the least number required to represent \(n \), what, in some average sense, is the growth of \(f(n) \)? These two questions are answered by Theorems 1 and 5 below. Theorem 4 is a "best-possible" strengthening of Theorem 1.

Theorem 1. There exists a sequence \(S \) of density zero such that every positive rational is the sum of a finite number of reciprocals of distinct terms of \(S \).

The proof depends on two lemmas.

Lemma 1. Let \(r \) be real, \(0 < r < 1 \) and \(a_1, a_2, \ldots \) integers defined inductively by

\[
\begin{align*}
a_1 &= \text{smallest integer } n, \quad r - \frac{1}{n} \geq 0, \\
a_2 &= \text{smallest integer } n, \quad r - \frac{1}{a_1} - \frac{1}{n} \geq 0, \\
&\vdots \\
a_k &= \text{smallest integer } n, \quad r - \frac{1}{a_1} - \frac{1}{a_2} - \ldots - \frac{1}{a_{k-1}} - \frac{1}{n} \geq 0.
\end{align*}
\]

Then \(a_{k+1} > a_i(a_i - 1) \) for each \(i \). Also if \(r \) is rational the sequence terminates at some \(k \), that is \(r = \sum_{i=1}^{k} 1/a_i \).

Lemma 1 is due to Sylvester [2]. It provides a canonical representation for each positive real less than 1 which we will call the Sylvester representation.

Lemma 2. If r is a positive rational and A a positive integer then there exists a finite set of integers $S(r, A) = \{n_1, n_2, \ldots, n_k\}$, $n_1 < n_2 < \cdots < n_k$ such that

$$r = \sum_{i=1}^{k} \frac{1}{n_i},$$

$$n_i \geq A,$$

$$n_{i+1} - n_i \geq A \quad 1 \leq i \leq k - 1.$$

Proof. Since the harmonic series diverges, there is an integer m such that

$$r - \left(\frac{1}{A} + \frac{1}{2A} + \cdots + \frac{1}{3A} + \cdots + \frac{1}{mA}\right) < \frac{1}{(m + 1)A}.$$

Now applying Lemma 1 to

$$r - \left(\frac{1}{A} + \frac{1}{2A} + \cdots + \frac{1}{mA}\right) = \sum_{i=1}^{k} \frac{1}{n_i}.$$

we conclude that there are integers $m_1 < m_2 < \cdots < m_s$ such that

$$r - \left(\frac{1}{A} + \frac{1}{2A} + \cdots + \frac{1}{mA}\right) = \sum_{i=1}^{s} \frac{1}{m_i}.$$

By our choice of m we see that $m_1 > (m+1)A$. Moreover Lemma 1 assures us that $m_{i+1} - m_i > A$. Then

$$\{A, 2A, \ldots, mA, m_1, m_2, \ldots, m_s\}$$

serves as $S(r, A)$.

Now the proof of Theorem 1 is immediate. Order the rationals r_1, r_2, r_3, \ldots. Let S_1 be an $S(r_1, 1)$. Let b_1 be the largest element of $S(r_2, 2b_1)$. Having defined S_1, S_2, \ldots, S_k defines S_{k+1} as follows. Let b_k be the largest element of S_k. Let S_{k+1} be an $S(r_{k+1}, 2b_k)$.

Then since S_k's are disjoint, there is a monotonically increasing bijection $S: (1, 2, 3, \ldots) \rightarrow \bigcup_{k=1}^{n} S_k$ which satisfies the demands of Theorem 1.

In fact S does more than Theorem 1 asserted. It is possible to represent all the positive rationals by sums of reciprocals of terms in the S constructed so that each such reciprocal appears in the representation of precisely one rational. Similar reasoning proves

Theorem 2. The set of unit fractions $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots$ can be partitioned
into disjoint finite subsets S_1, S_2, \ldots such that each positive rational is the sum of the elements of precisely one S_i.

Theorem 2 remains true if the phrase "each positive rational," is replaced by "each positive integer." It would be interesting to know the necessary and sufficient condition that a sequence of rationals r_1, r_2, r_3, \ldots corresponds to the sums of a partition of the set of unit fractions into disjoint finite subsets.

Theorem 3. If n_1, n_2, n_3, \ldots, is a sequence of positive integers with

1. $n_{k+1} \geq n_k(n_k-1) + 1$, for $k = 1, 2, 3, \ldots$ and
2. for an infinity of k, $n_{k+1} > n_k(n_k-1) + 1$ then $\sum_{k=1}^{n} 1/n_k$ is irrational.1

Proof. Observe first that if a_1, a_2, \ldots is a sequence of positive integers with $a_{k+1} = a_k(a_k-1) + 1$ for $k = 1, 2, 3, \ldots$, and $a_1 > 1$, then $\sum_{k=1}^{n} 1/a_k = 1/(a_1-1)$. By assumption (2) there is k such that $n_k > 1$. From the observation we see that for any integer i,

$$\frac{1}{n_{i+1}} < \frac{1}{\sum_{h=n}^{i} n_h} - \frac{1}{\sum_{h=n}^{i} n_h} < \frac{1}{n_{i+1} - 1}.$$

Thus the Sylvester representation of $\sum_{h=n}^{i} 1/n_h$ is $1/n_h + 1/n_{h+1} + 1/n_{h+2} + \cdots$. Since the Sylvester representation of $\sum_{n=2}^{\infty} 1/n_k$ has an infinite number of terms, we see by Theorem 1 that $\sum_{n=2}^{\infty} 1/n_k$ is irrational. Hence so is $\sum_{n=1}^{\infty} 1/n_k$ irrational.

We will soon strengthen Theorem 1 by Theorem 4 for which we will need

Lemma 3. The number of integers in $(x, 2x)$ all of whose prime factors are $\leq x^{1/2}$ is greater than $x/10$ for $x > x_0$.

Proof. The number of these integers is at least $x - \sum_{p \leq x} (x/p)$, where the summation extends over the primes $x^{1/2} < p < 2x$. From the fact that $\sum_{p \leq x} 1/p = \log \log x + c + o(1)$ Lemma 3 easily follows.

Theorem 4. Let $0 < a_1 < a_2 < \cdots$ be a sequence A of integers with $\sum_{n=1}^{\infty} 1/a_n = \infty$. Then there exists a sequence $B: b_1 < b_2 < \cdots$ of integers satisfying $a_n < b_n, 1 \leq n < \infty$, such that every positive rational is the sum of the reciprocals of finitely many distinct b's.

Proof. Set $A(x) = \sum_{a \leq x} 1$. We omit from A all the $a_i, 2^k \leq a_i < 2^{k+1}$ for which

$$(1) \quad A(2^{k+1}) - A(2^k) < 2^k/k^2.$$

Thus we obtain a subsequence A' of $A, a_1' < a_2' < \cdots$. Clearly $\sum_{n=1}^{\infty} 1/a_n' = \infty$, since, by (1), the reciprocals of the omitted a's con-

1 Added in proof. A similar result is to be found in [2].
verges.

Set \(A'(x) = \sum u_i < x \). Denote by \(k_1 < k_2 < \cdots \) the integers for which

\[
(2) \quad t_{k_i} = A'(2^{k_i+1}) - A'(2^{k_i}) \geq 2^{k_i}/k_i^2.
\]

By (2), if \(m \neq k_i \) then \(A'(2^{m+1}) = A'(2^m) \).

By Lemma 3 there are at least \((t_{k_i})/10\) integers in \((2^{k_i+1}, 2^{k_i+2})\) all of whose prime factors are less than \(2(2k_i+1)/2\). Denote such a set of integers by \(b_1^{(i)} < b_2^{(i)} < \cdots < b_{q_i}^{(i)} \) where \(q_i \) is, say, the first integer larger than \(t_{k_i}/10 \). Clearly

\[
\sum_{r=1}^{q_i} 1/b_r^{(i)} > (1/40) \sum 1/a_j \quad (2^{k_i} < a_j < 2^{k_i} + 1).
\]

Thus from \(\sum 1/a_i = \infty \) we have

\[
(3) \quad \sum_{i=1}^{\infty} \sum_{r=1}^{q_i} 1/b_r^{(i)} = \infty.
\]

Clearly \(b_1^{(i)} < b_{(i+1)}^{(i)} \); thus all the \(b_i \)'s can be written in an increasing sequence

\(d_1 < d_2 < \cdots \).

Now let \(u_1/v_1, u_2/v_2, \cdots \) be a well-ordering of the positive rationals. Suppose we have already constructed \(b_1 < b_2 < \cdots < b_m \) so that

\(a_i < b_i, 1 \leq i \leq m \), and that \(u_r/v_r, 1 \leq r < n \), are the sums of reciprocals of distinct \(b_i \)'s. Choose

\[
(4) \quad 2^{k_i} > \max\{v_n, b_m, a_m + 1\}
\]

and let \(d_{i+1} < d_{i+2} < \cdots \) be the \(d_i \)'s greater than \(2^{k_i+1} \). By (3) and (4) there is an \(s_i > j_i \) such that

\[
(5) \quad \sum_{r=j_i+1}^{q_i} 1/d_r < u_n/v_n \leq \sum_{r=j_{i+1}}^{1+q_i} 1/d_r.
\]

By (5)

\[
(6) \quad 0 < u_n/v_n - \sum_{j_i+1}^{s_i} 1/d_r = C_n/D_n < 1/d_{s_i}.
\]

Let \(x \) be the integer such that \(2^x < d_{s_i} \leq 2^{x+1} \); then \(x = k_{x+1} \) for some \(s \geq i \) (by definition of the \(d_i \)'s). Since, by definition, all the prime factors of \(d_r, j_i \leq r \leq q_i \), are less than \(2^{(x+1)/2} \) we have

\[
(7) \quad D_n \leq v_n[d_{j_{i+1}}, d_{j_{i+2}}, \cdots, d_{s_i}] < v_n(2^{x+1})^{2^{(x+1)/2}} < 2^x(2^{x+1})^{2^{(x+1)/2}} < 2^{2x/2}
\]

for \(x > x_0 \).
Now
\[
\frac{C_n}{D_n} = \frac{1}{y_1} + \cdots + \frac{1}{y_r}, \quad f < C^* \log D_n < C 2^{2s/3}
\]
with, clearly, \(d_s < y_1 < \cdots < y_r \) (by [3]).

Define
\[
b_{m+n+t} = d_{j_i+t} \quad \text{for } t = 1, \ldots, s_i - j_i,
\]
\[
b_{m+n+s_i-j+t'} = y_{t'} \quad \text{for } 1 \leq t' \leq f.
\]

By (8) the \(b \)'s are distinct. Clearly \(b_{m+n+t} > a_{m+n+t} \) for \(t = 1, \ldots, s_i - j_i \)
since \(b_{m+n+t} = d_{j_i+t} \), and the \(d \)'s are greater than the corresponding \(a' \)'s, which in turn are greater than the \(a \)'s. By (8) the \(y \)'s do not change the situation. Their number is at most \(C 2^{2x/3} \). But by (2) there are at least
\[
2^{k_1^2}/k_2 > 2^{x-1}/x^2, \quad x = k_x + 1
\]

\(a_i \)'s in \((2^{k_1}, 2^{k_1+1})\) and by definition to more than half of them there does not correspond any \(d_i \); thus to those \(a_i \)'s to which no \(d \) corresponds we can make correspond the \(f < C 2^{2s/3} \) \(y \)'s since clearly \(C 2^{2s/3} < 2^{x-1}/x^2 \), if \(x > x_0 \).

The proof is then completed as for Theorem 1. Note that each \(b_i \) is used in the representation of only one rational number.

Theorem 4 is a best possible result since if \(\sum_{i=1}^{\infty} 1/a_i < \infty \) the conclusion could not possibly hold.

In the next theorem \(\gamma \) is Euler's constant.

THEOREM 5. \(\lim_{n \to \infty} f(n) e^{-n} = e^{-\gamma}. \)

PROOF. Define \(g(n) \) by
\[
\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{g(n)} < n < \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{g(n)} + \frac{1}{g(n) + 1}.
\]

Then \(n - \sum_{i=1}^{g(n)} 1/i \) is a rational number less than 1 which we denote \(a_n \) and which can be expressed in the form

\[
a_n = \frac{A}{[1, 2, \ldots, g(n)]}
\]

for some integer \(A \).

Now, \(0 < u/v < 1 \) can be represented as the sum of less than
\[
\frac{c \log v}{\log \log v}
\]
distinct unit fractions [3].
Thus \(a_n \) is the sum of fewer than
\[
\frac{c \log [1, 2, \ldots, g(n)]}{\log \log [1, 2, \ldots, g(n)]}
\]
unit fractions (each less than \(1/g(n) \)). The expression
\[
\log [1, 2, \ldots, g(n)]
\]
is asymptotic to \(g(n) \) [4, p. 362]. Thus for large \(n \), \(a_n \) is the sum of fewer than
\[
\frac{cg(n)}{\log g(n)}
\]
distinct unit fractions.
Hence
\[
g(n) < f(n) < g(n) + \frac{cg(n)}{\log g(n)}
\]
Thus
\[
\lim_{n \to \infty} f(n)/g(n) = 1.
\]
From the equation
\[
n = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{g(n)} + a_n = \log g(n) + \epsilon_n + a_n + \gamma
\]
with \(\lim_{n \to \infty} \epsilon_n = 0 \) and \(\lim_{n \to \infty} a_n = 0 \), it follows that \(g(n) \) is asymptotic
to \(e^\gamma \).
This proves Theorem 5.

REFERENCES

3. Paul Erdös, The solution in whole numbers of the equation: \(1/x_1+1/x_3+1/x_1+\cdots+1/x_N = a/b \), Mat. Lapok 1 (1950), 192–210.

TECHNION, HAIFA AND
UNIVERSITY OF CALIFORNIA AT DAVIS