THE RELATION BETWEEN CONTINUITY AND DIFFERENTIABILITY OF FUNCTIONS ON ALGEBRAS

R. F. RINEHART AND JACK C. WILSON

1. Introduction. Let \(\mathbb{A} \) be a finite dimensional associative algebra with an identity over the real or complex field \(\mathbb{F} \), and let \(f \) be a function on \(\mathbb{A} \) to \(\mathbb{A} \), i.e., a function with domain and range in \(\mathbb{A} \). \(\mathbb{A} \) is a normable ring, hence a metric topological space in the metric induced by the chosen norm \([4]\). Consequently, the usual elementary concepts of limits and continuity make sense, and the customary elementary theorems are valid.

In \([2]\) a generalized difference quotient definition of differentiability and derivative was given for a function \(f \) for the case of a total matrix algebra over \(\mathbb{F} \). This definition, which is equally applicable to any finite dimensional associative algebra \(\mathbb{A} \) over \(\mathbb{F} \), is:

Definition. Let \(f(\xi) \) be a function with domain and range in \(\mathbb{A} \) defined in some neighborhood of \(\xi = \alpha \). Then \(f(\xi) \) is said to be differentiable at \(\xi = \alpha \), if, for all \(\delta \in \mathbb{A} \) in a sufficiently small neighborhood \(\mathbb{U} \) of 0,

(I) the difference \(f(\alpha + \delta) - f(\alpha) \) is expressible as a finite sum of the form \(f(\alpha + \delta) - f(\alpha) = \sum_{i=1}^{n} \lambda_i \delta \mu_i \), where \(\lambda_i, \mu_i \in \mathbb{A} \), and

(II) \(\lim_{\delta \to 0} \sum_{i=1}^{n} \lambda_i \mu_i \) exists.

If I and II are fulfilled, then the limit in II is called the derivative of \(f(\xi) \) at \(\xi = \alpha \), and is denoted by \(f'(\alpha) \).

If \(\mathbb{A} \) is commutative, it is easily verified that the above definition implies that \(f(\xi) \) is Fréchet-differentiable at \(\xi = \alpha \), which in turn implies that \(f(\xi) \) is continuous at \(\xi = \alpha \) \([1]\). For noncommutative \(\mathbb{A} \) this inference is not warranted.

The proofs in \([2]\) of the uniqueness of the derivative, and of the theorems concerning differentiability and derivative of the sum or product of two functions, are equally valid for the more general algebras \(\mathbb{A} \) of the type considered here. However, the proof that the product \(fg \) of two functions is differentiable at \(\xi = \alpha \) if \(f \) and \(g \) are, and that \((fg)'(\alpha) = f'(\alpha)g(\alpha) + f(\alpha)g'(\alpha) \), assumed that at least one of the functions \(f, g \) was continuous at \(\xi = \alpha \), and it was conjectured that (A) this hypothesis is essential since (B) differentiability at a point does not imply continuity at the point.

1 Supported by ONR grant.
In this note the above double conjecture is settled for any \mathfrak{A} as defined above by disproving Conjecture A, and proving Conjecture B, together with some theorems which get at the essential reason for the validity of B and settle a question of N. J. Fine.

2. Differentiability of the product of differentiable functions. As a preliminary to the treatment of Conjecture A, the definition of differentiability is recast as follows.

Lemma 2.1. A function $f(\xi)$ defined in a neighborhood of $\xi = \alpha \in \mathfrak{A}$, is differentiable at $\xi = \alpha$ if and only if, for all $\delta \in \mathfrak{A}$ with sufficiently small norm, the functional difference can be written in the form

$$f(\alpha + \delta) - f(\alpha) = \delta \Phi + \sum_{i=1}^{m} \nu_i \delta \eta_i, \quad (\Phi, \nu_i, \eta_i \in \mathfrak{A})$$

where $\lim_{\delta \to 0} \Phi$ exists and

$$\sum_{i=1}^{m} \nu_i \eta_i = 0.$$

Proof. The sufficiency of the condition follows directly from the definition. For the necessity, we observe that from condition I of the definition, for $\|\delta\|$ sufficiently small, $f(\alpha + \delta) - f(\alpha) = \delta \sum_{i=1}^{k} \lambda_i \mu_i - \delta \sum_{i=1}^{m} \lambda_i \eta_i$. Since \mathfrak{A} has an identity, the bracketed expression is of the form $\sum_{i=1}^{m} \nu_i \delta \eta_i$. Further $\sum_{i=1}^{m} \nu_i \eta_i = 0$, and condition II of the definition assures that $\lim_{\delta \to 0} \sum_{i=1}^{m} \lambda_i \mu_i$ exists.

Conjecture A is now settled in the negative by

Theorem 2.1. Let $f(\xi)$ and $g(\xi)$ be functions differentiable at $\xi = \alpha \in \mathfrak{A}$. Then $p(\xi) = f(\xi)g(\xi)$ is differentiable at $\xi = \alpha$ and $p'(\alpha) = f'(\alpha)g(\alpha) + f(\alpha)g'(\alpha)$.

Proof. By the lemma

$$f(\alpha + \delta) = f(\alpha) + \delta \Phi + \sum_{i=1}^{k} \nu_i \delta \eta_i,$$

$$g(\alpha + \delta) = g(\alpha) + \delta \Psi + \sum_{i=1}^{m} \theta_i \delta \pi_i,$$

such that $\lim_{\delta \to 0} \Phi = f'(\alpha)$, $\lim_{\delta \to 0} \Psi = g'(\alpha)$, and

$$\sum_{i=1}^{k} \nu_i \eta_i = \sum_{i=1}^{m} \theta_i \pi_i = 0 \quad \text{for all } \delta \in \mathfrak{A} \text{ in some neighborhood of } 0.$$
Therefore,
\[p(\alpha + \delta) - p(\alpha) = f(\alpha + \delta)g(\alpha + \delta) - f(\alpha)g(\alpha) \]
\[= \left[f(\alpha) + \delta \Phi + \sum_{i=1}^{k} \nu_i \delta \eta_i \right] \left[g(\alpha) + \delta \Psi + \sum_{i=1}^{m} \theta_i \delta \pi_i \right] \]
\[- f(\alpha)g(\alpha) \]
\[= f(\alpha)\delta \Psi + f(\alpha) \sum_{i=1}^{m} \theta_i \delta \pi_i + \delta \Phi g(\alpha) + \delta \Phi \delta \Psi \]
\[+ \delta \Phi \sum_{i=1}^{m} \theta_i \delta \pi_i + \left[\sum_{i=1}^{k} \nu_i \delta \eta_i \right] \delta \Psi \]
\[+ \left[\sum_{i=1}^{k} \nu_i \delta \eta_i \right] g(\alpha) + \left[\sum_{i=1}^{k} \nu_i \delta \eta_i \right] \left[\sum_{i=1}^{m} \theta_i \delta \pi_i \right]. \]

Thus the difference \(p(\alpha + \delta) - p(\alpha) \) satisfies condition I of the definition of differentiability. To verify condition II, we need to establish the existence of the limit of a "detached coefficient" of \(\delta \). Any such coefficient will do, by virtue of the uniqueness of the derivative, when it exists \([2]\). One such "detached coefficient" is,

\[f(\alpha)\Psi + \Phi g(\alpha) + \delta \Phi \Psi + f(\alpha) \sum_{i=1}^{m} \theta_i \pi_i + \delta \Phi \sum_{i=1}^{m} \theta_i \pi_i + \left[\sum_{i=1}^{k} \nu_i \delta \eta_i \right] \delta \Psi \]
\[+ \left[\sum_{i=1}^{k} \nu_i \delta \eta_i \right] g(\alpha) + \left[\sum_{i=1}^{k} \nu_i \delta \eta_i \right] \left[\sum_{i=1}^{m} \theta_i \delta \pi_i \right]. \]

which by equations 2.1, is

\[f(\alpha)\Psi + \Phi g(\alpha) + \delta \Phi \Psi. \]

The limit as \(\delta \to 0 \) of this expression exists, since the limits of \(\Phi \) and \(\Psi \) exist, and that limit is \(f(\alpha)g' \left(\alpha \right) + f' \left(\alpha \right)g(\alpha) \).

3. Differentiability does not imply continuity. Theorem 2.1 was proved without invoking continuity of \(f \) or \(g \) at \(\alpha \) as in \([2]\). Indeed, the following example, communicated by N. J. Fine, shows that a function may be differentiable at \(\alpha \in \mathbb{A} \) and discontinuous at \(\alpha \).

Let \(\mathbb{A} \) be the algebra of \(2 \times 2 \) matrices over the real field. For

\[\xi = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \]

let \(M_{i} = \max_{|\xi|} |x_{ij}|. \) Define a function \(f(\xi) \) by,
f(ξ) = \(\begin{pmatrix} x_{11} & M_2 x_{13} \\ x_{21}/M_2 & x_{22} \end{pmatrix} \), for ξ ≠ 0

f(0) = 0.

f(ξ) is discontinuous at ξ = 0, since \(\lim_{\xi \to 0} f(\xi) \) does not exist. However,

\[f(0 + \delta) - f(0) = f(\delta) = P^{-1} P \]

where

\[P = \begin{pmatrix} M_2 & 0 \\ 0 & 1/M_2 \end{pmatrix} \]

for \(\delta \neq 0 \),

\[P = I, \text{ the identity matrix, for } \delta = 0. \]

Hence \(f \) fulfills condition I for differentiability at ξ = 0. Further \(\lim_{\delta \to 0} PP^{-1} = I \). Hence \(f(\xi) \) is differentiable at ξ = 0.

The example is, so to speak, a pointwise example, and Fine, in the cited communication, raised the question: Is a function which is differentiable in a neighborhood of \(\alpha \in \mathfrak{A} \), necessarily continuous at \(\alpha \)? That this is not the case, and why it is not, is shown by the following theorem.

Theorem 3.1. Let \(e_1, \ldots, e_n \) be a basis for \(\mathfrak{A} \), with \(e_1 \) the identity of \(\mathfrak{A} \). With \(\xi = \sum_{i=1}^{n} x_i e_i \), \(x_i \in \mathfrak{F} \), let \(f(\xi) = \sum_{i=1}^{n} f_i(x_1, \ldots, x_n)e_i \), \(f_i(x_1, \ldots, x_n) \in \mathfrak{F} \), be defined in a neighborhood \(\mathfrak{A} \) of \(\alpha = \sum_{i=1}^{n} a_i e_i \), \(a_i \in \mathfrak{F} \). A necessary condition that \(f(\xi) \) be differentiable at \(\xi = \alpha \) is that \(\partial f_i/\partial x_1 \) exist at \(\xi = \alpha \) for \(i = 1, \ldots, n \). In this case

\[f^t(\alpha) = \sum_{i=1}^{n} \left. \frac{\partial f_i}{\partial x_1} \right|_{\xi = \alpha} e_i. \]

Further, if \(\mathfrak{A} \) is normal simple over \(\mathfrak{F} \), then this condition is also sufficient.

Proof. (a) **Necessity.** Since \(f(\xi) \) is differentiable at \(\xi = \alpha \),

\[f(\alpha + \delta) - f(\alpha) = \sum_{i=1}^{k} \lambda_i \delta \mu_i \]

and \(\lim_{\delta \to 0} \sum_{i=1}^{k} \lambda_i \mu_i \) exists. Choose \(\delta = d \epsilon_1, \, d \in \mathfrak{F} \). Then

\[\lim_{d \to 0} \frac{[f(\alpha + d \epsilon_1) - f(\alpha)]}{d} = \lim_{d \to 0} \sum_{i=1}^{k} \lambda_i \mu_i = f^t(\alpha) \]

exists. This implies that the limit of each basis component exists, i.e.,
\[
\frac{f_i(a_1 + d, a_2, \ldots, a_n) - f_i(a_1, a_2, \ldots, a_n)}{d} = \frac{\partial f_i}{\partial x_1} \lim_{d \to 0}
\]
exists. Hence
\[
f'(\alpha) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_1} \epsilon_i.
\]

(b) **Sufficiency**, under the added hypothesis that \(\mathfrak{A} \) is normal simple.

Let \(\delta = \sum_{i=1}^{n} d_i \epsilon_i, \) such that \((\alpha + \delta) \in \mathfrak{A} \). We seek to show first that the difference
\[
f(\alpha + \delta) - f(\alpha) = \sum_{i=1}^{n} [f_i(\alpha + \delta) - f_i(\alpha)] \epsilon_i,
\]
where \(f_i(\xi) \) means \(f_i(x_1, \ldots, x_n) \), can be written in the form \(\sum_{i=1}^{n} \lambda_i d \mu_i \), or expressing \(\delta, \lambda_i, \mu_i \) in terms of the basis elements, that
\[
(3.1) \quad f(\alpha + \delta) - f(\alpha) = \sum_{i,j=1}^{n} t_{ij} \epsilon_i \left(\sum_{k=1}^{n} d_k \epsilon_k \right) \epsilon_j.
\]

If \(c_{ijk} \) are the multiplication constants for the basis \(\epsilon_1, \ldots, \epsilon_n \), i.e., \(\epsilon_i \epsilon_j = \sum_{k=1}^{n} c_{ijk} \epsilon_k \), then 3.1 can be written
\[
(3.2) \quad f(\alpha + \delta) - f(\alpha) = \sum_{i,j,k,r,s=1}^{n} t_{ijk} c_{ijk} \epsilon_i \epsilon_j \epsilon_k \epsilon_r.
\]

Equation 3.2 will be fulfilled for arbitrary \(\delta \) in \(\mathfrak{A} \) i.e., arbitrary \(d_h \), if and only if the system of linear equations over \(\mathfrak{F} \),
\[
(3.3) \quad f_r(\alpha + \delta) - f_r(\alpha) = \sum_{s,i,j=1}^{n} t_{ij} c_{ikr} \epsilon_s \epsilon_r, \quad k, r = 1, \ldots, n
\]
is solvable for the coefficients \(t_{ij} \). Now \(f(\alpha + \delta) - f(\alpha) \) can be written in the form
\[
f(\alpha + \delta) - f(\alpha) = \sum_{r=1}^{n} [f_r(\alpha + \delta) - f_r(\alpha)] \epsilon_r = \sum_{r=1}^{n} \left(\sum_{k=1}^{n} g_{rk} d_k \right) \epsilon_r,
\]
where
\[
g_{rs} = [f_s(a_1 + d_1, \ldots, a_s + d_s, a_{s+1}, \ldots, a_n) - f(a_1 + d_1, \ldots, a_s + d_s, a_{s+1}, \ldots, a_n)] d_s^{-1}, \quad \text{if } d_s \neq 0,
\]
\[
g_{rs} = 0, \quad \text{if } s \neq 1 \text{ and } d_s = 0,
\]
\[
g_{r1} = \frac{\partial f_r}{\partial x_1}, \quad \text{if } d_1 = 0.
\]
Hence the problem of satisfying 3.2 for arbitrary d_k is transformed to that of showing that the system of linear equations over \mathbb{I},

\begin{equation}
\sum_{i,j,k} t_{ij} e_{ik} e_{kj} = g_{rk} \quad (r, k = 1, \ldots, n),
\end{equation}

is solvable for the t_{ij}. Since \mathbb{I} is normal simple, the coefficient matrix of the t_{ij} is nonsingular [3], and 3.4 has a unique solution for the t_{ij}. Hence

\[f(\alpha + \delta) - f(\alpha) = \sum_{r,k} g_{rk} d_k \epsilon_r \]

\[= \sum_{i,j,k,r} t_{ij} e_{ik} e_{kj} d_k \epsilon_r \]

\[= \sum_{i,j=1}^n t_{ij} \epsilon_j \delta \epsilon_j \]

and the function f fulfills requirement I of the definition for $\alpha + \delta$ in \mathbb{I}.

Now $\lim_{\epsilon \to 0} \sum_{i,j=1}^n t_{ij} \epsilon_i \epsilon_j$ exists if and only if the limit of its rth component, $r = 1, \ldots, n$, exists. The rth component is $\sum_{i,j=1}^n t_{ij} e_{ik} e_{kj}$, since $e_{ik} = 1$ if $k = i$, 0 otherwise, and

\[\lim_{\epsilon \to 0} \sum_{i,j} t_{ij} e_{ik} e_{kj} = \lim_{\epsilon \to 0} g_{r1} = \lim_{d_1 \to 0} g_{r1} \]

\[= \lim_{d_1 \to 0} \frac{f_r(a_1 + d_1, a_2, \ldots, a_n) - f_r(a_1, \ldots, a_n)}{d_1} \]

\[= \frac{\partial f_r}{\partial x_1}_{x_1 = a} \]

This holds for each $r = 1, \ldots, n$, hence $f(\xi)$ is differentiable at $\xi = \alpha$.

Theorem 3.1 shows that for a normal simple algebra \mathbb{A}, e.g., a total matrix algebra, differentiability of $f(\xi)$ at $\xi = \alpha$, requires only that the component functions of $f(\xi)$ be differentiable with respect to the identity component of ξ; they may be any functions whatever, continuous or not, of x_2, \ldots, x_n, provided only that $f(\xi)$ is defined in \mathbb{A}.

Normal simple algebras are the most general algebras satisfying the second part of Theorem 3.1 in the following sense.

Theorem 3.2. If \mathbb{A} is not normal simple, then there exists at least one function on \mathbb{A} to \mathbb{A}, with analytic component functions, which is not differentiable at any element of \mathbb{A}.

Proof. Suppose \mathbb{A} is not simple. Then \mathbb{A} contains a nontrivial two-sided ideal \mathbb{E}. The identity e_1 of \mathbb{A} does not belong to \mathbb{E}. Since $\mathbb{E} \neq 0$,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
an element $e_2 \in \mathfrak{A}$ independent of e_1 over \mathfrak{F}. Then \mathfrak{A} has a basis e_1, e_2, \cdots, e_n including e_1 and e_2. The function $f(\xi) = x_2 e_1$ has component functions analytic for all $\xi \in \mathfrak{A}$. If $f(\xi)$ were differentiable at some $\alpha \in \mathfrak{A}$, then for all δ with $||\delta||$ sufficiently small,

$$f(\alpha + \delta) - f(\alpha) = \sum_{i,j=1}^{n} t_{ij} e_i \delta e_j.$$

Choose $\delta = d_2 e_2 \in \mathfrak{F}$ with $d_2 \neq 0$ in \mathfrak{F}, and $|d_2|$ appropriately small. Then for all such d_2,

$$f(\alpha + d_2 e_2) - f(\alpha) = d_2 e_1 = \sum_{i,j=1}^{n} t_{ij} e_i \delta e_2 e_j,$$

whence

$$e_1 = \sum_{i,j=1}^{n} t_{ij} e_i \epsilon_{2j}$$

is in \mathfrak{C}, a contradiction. Hence $f(\xi)$ is differentiable at no $\alpha \in \mathfrak{A}$.

Suppose that \mathfrak{A} is not normal. Then \exists an element $e_3 \in \mathfrak{A}$, independent of e_1, lying in the centrum of \mathfrak{A}. Consider again $f(\xi) = x_2 e_1$ and suppose that $f(\xi)$ is differentiable at $\xi = \alpha$. Choosing $\delta = d_2 e_3$, then as above

$$(3.5) \quad e_1 = \sum_{i,j=1}^{n} t_{ij} e_i \epsilon_{2j} = \left(\sum_{i,j=1}^{n} t_{ij} e_i \right) e_3.$$

Since $\lim_{\delta \to 0} \sum_{i,j=1}^{n} t_{ij} e_i \epsilon_{2j}$ exists, 3.5 implies that $e_1 = f'(\alpha) e_3$. But by Theorem 3.1, $f'(\alpha) = \partial f/\partial x_1 |_{x_1 = 0}$. Hence $e_1 = 0$, a contradiction.

References

Case Institute of Technology and Florida Presbyterian College

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use