A NOTE ON PERMUTATIONS IN AN ARBITRARY FIELD

L. CARLITZ

The writer [1] has proved that every permutation on the numbers of the finite field $GF(q)$ is generated by the special permutations
\[(1) \quad x^{q-2}, \quad ax + \beta \quad (\alpha, \beta \in GF(q), \alpha \neq 0).\]

Let F denote an arbitrary field. Define the function
\[(2) \quad x^* = \begin{cases} x^{-1} & (x \in F, x \neq 0), \\ 0 & (x = 0). \end{cases}\]

Clearly x^* defines a permutation of F.

The following theorem holds.

Theorem 1. Every transposition $(\alpha \beta)$, where $\alpha, \beta \in F$ is finitely generated by the special permutations
\[(3) \quad x^*, \quad \gamma x + \delta \quad (\gamma, \delta \in F, \gamma \neq 0).\]

The proof (compare [1]) follows from consideration of the function
\[g(x) = -\alpha^2 \left((x - \alpha)^* + \frac{1}{\alpha} \right)^* - \alpha,*\]
where α is a fixed nonzero number of F. It is easily verified that $g(x)$ represents the transposition (0α).

Let $G = G(F)$ denote the group consisting of all finite products
\[t_1 t_2 \cdots t_n,\]
where the t_j are arbitrary transpositions $(\alpha \beta)$. As an immediate corollary of Theorem 1 we have

Theorem 2. The group G is generated by the special permutations (3).

Reference

Duke University

Received by the editors December 15, 1961.

1 Supported in part by the National Science Foundation grant G 16485.