Given a sequence \(\{a_n\}_{n=0}^\infty \) of complex numbers, a number of theorems have been proved concerning implications of the vanishing of certain differences \(\Delta^n a_n \) if the given sequence satisfies some growth restriction. The first such result, proved by Agnew [1], states that if \(\{a_n\} \) is bounded and \(\Delta^2 a_0 = 0 \) for all \(n \), then \(a_n = 0 \) for all \(n \). If all the odd differences are zero, the sequence is constant. Fuchs [6] proved the following: Let \(a_n = o(n^k) \) for some positive number \(k \), and let \(n_j \) be a subsequence of the positive integers such that if \(n(R) \) is the number of \(n < R \), then \(n(R) \geq R/2 \) for \(R > R_0 \). If \(\Delta^n a_0 = 0 \) for all \(n_j \), then \(a_n = p(n) \) where \(p(x) \) is a polynomial of degree less than \(k \).

Buck [4] assumed only that \(\lim \sup |a^n|^{1/n} < 1 \) and \(\Delta^n a_0 = 0 \) for all \(n \) belonging to a set of positive integers of density \(d > \frac{1}{2} \) and proved there is a function \(f \) of exponential type whose growth function \(h(\theta) \) satisfies \(h(\pm \pi/2) < \pi \) such that \(f(n) = a_n \) for all \(n \). In this paper, we show that if the given sequence is extended to \(\{a_n\}_{n=\infty}^{\infty} \) by letting \(a_{-n} = a_n \), then the vanishing of certain of the even central differences \(\Delta^{2n} a_{-n} \) has similar implications. Or, letting \(a_{-n} = -a_{n-1} \), vanishing of odd differences \(\Delta^{2n-1} b_{-n} \) gives similar results.

If \(G \) is a connected set, let \(K[G] \) denote the class of all entire functions of exponential type whose conjugate indicator diagrams \(D(f) \) are contained in \(G \). If \(G \) is the rectangle \(\{x + iy | x| \leq a; |y| \leq c \} \), then \(K[a, c] \) will be used for \(K[G] \). Let \(C_n \) denote the polynomial \(z(z-1) \cdots (z-n+1)/n! \).

Certain results concerning the sequence \(\{\mathcal{L}_n\} \) of Stirling functionals given by \(\mathcal{L}_n(f) = \Delta^nf(-n/2) \) will be needed. These functionals

Presented to the Society, January 24, 1961, under the title, A theorem on vanishing differences; received by the editors November 24, 1961 and, in revised form, December 12, 1961.
have the representation
\[\Delta^n f(-n/2) = \frac{1}{2\pi i} \int_{\Gamma} (e^{i\xi} - e^{-i\xi})^n F(\xi) \, d\xi \]
where \(F \) is the Borel (Laplace) transform of \(f \) and \(\Gamma \) is any simple contour enclosing the conjugate indicator diagram \(D(f) \). Let \(B \) be the set of all \(\xi \) satisfying \(|e^{i\xi} - e^{-i\xi}| < 2 \). Then \(B \) is a convex, lens-shaped region, symmetric about the origin whose boundary has vertices at \(\pm \pi i \) and crosses the real axis at \(\pm \log(3+2\sqrt{2}) \). For \(f \) in \(K[B] \), Buck \cite{3} showed that
\[f(z) = \sum_{n=0}^{\infty} \Delta^n f(-n/2)(z/n)C_{e+n/2,n-1,n-1}, \]
convergent for all \(z \). The author \cite{5} showed that for a given sequence \(\{c_n\} \) of complex numbers, there is a function \(f \) in \(K[B] \) such that \(\Delta^n f(-n/2) = c_n \); \(n = 0, 1, 2, \ldots \) if and only if \(\limsup |c_n|^{1/n} < 2 \). If we let \(G(t) = \sum c_n t^n \), then \(f \) has the representation
\[f(z) = \frac{1}{2\pi i} \int_{B} \frac{G(t)}{t} \exp\left[2z \sinh^{-1} \frac{t}{2}\right] dt \]
where \(E \) is a simple contour contained in the region of regularity of \(G \) and enclosing the disk \(|t| \leq \frac{1}{2} \). Then the conjugate indicator diagram \(D(f) \) is contained in the convex hull of the image of \(E \) under the map \(\xi = 2 \sinh^{-1} 1/(2z) \).

Theorem 1. Let \(\{b_n\}_{n=-\infty}^{\infty} \) be an even sequence of complex numbers such that \(\limsup |b_n|^{1/n} \leq 1 \). Suppose there is a set \(A \) of positive integers of density \(d > 0 \) such that for all \(n \) in \(A \), \(\Delta^2 b_{-n} = 0 \). Then
\[\sum \Delta^2 b_{-n}(z/2n)C_{e+n/2,n-1,n-1} \]
converges to an even function \(f \) in \(K[B] \) and \(f(n) = b_n; n = 0, \pm 1, \pm 2, \ldots \).

We need the following lemma.

Lemma. For a sequence \(\{b_n\}_{n=-\infty}^{\infty} \), define \(Q(t) \) formally by

\[Q(t) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} C_{n,k} b_{-n-2k} t^n \]

and define \(P(z) \) by \(P(z) = (1+2z)^{-1}Q(z/(1+2z)) \). Then formally \(P(z) = \sum \Delta^2 b_{-n} z^n \).

Proof.\(^1\) Let \(E \) be an operator defined for a sequence \(a = \{a_k\} \) by \(E(a)(k) = a(k+1) \). Then \(\Delta = E - 1 \), and we have

\(^1\) This proof was suggested by Professor R. C. Buck.
\begin{align*}
Q(t) &= \sum_{n=0}^{\infty} \sum_{k=0}^{n} C_{n,k} b_{-n-2k} t^n \\
&= \sum_{n=0}^{\infty} t^n E^{-n} \sum_{k=0}^{n} C_{n,k} E^{2k} b_0 \\
&= \sum_{n=0}^{\infty} t^n (E + E^{-1})^n b_0 \\
&= \frac{1}{1 - t(E + E^{-1})} b_0.
\end{align*}

\begin{align*}
Q(z/(1 + 2z)) &= (1 + 2z) \frac{1}{1 - z(E - 2 + E^{-1})} b_0 \\
&= (1 + 2z) \sum_{n=0}^{\infty} z^n (E - 2 + E^{-1})^n b_0 \\
&= (1 + 2z) \sum_{n=0}^{\infty} \Delta^n b_{-n} z^n.
\end{align*}

\textbf{Proof of Theorem 1.} Since

\[\limsup \left| b_n \right|^{1/n} \leq 1, \quad \limsup \left| \sum_{k=0}^{n} C_{n,k} b_{-n+2k} \right| \leq 2. \]

Thus \(Q(t) \) is regular in the disk \(|t| < \frac{1}{2} \). Then from its definition \(P(z) \) is regular for \(|z/(1 + 2z)| < \frac{1}{2} \) or \(|z| < |z + \frac{1}{2}| \) which is the set of all \(z \) whose real part is greater than \(-\frac{1}{2} \). Let \(G(z) = P(z^2) = \sum \Delta^n b_{-n} z^{2n} \). Then \(G \) is regular for all \(z \) such that \(\Re(z^2) > -\frac{1}{4} \); i.e., for \(z \) in the region containing the origin and bounded by the equilateral hyperbola \(y^2 - x^2 = \frac{1}{4} \) where \(z = x + iy \). Let \(r_0 \) be the radius of convergence of \(\sum \Delta^n b_{-n} z^{2n} \). Then \(r_0 \geq 1 \). Since \(G \) is even, \(G(z) = \sum c_n z^n \) where \(c_{2n+1} = 0 \) and \(c_{2n} = \Delta^n b_{-n} \). Then from the hypothesis, \(c_n = 0 \) for all \(n \) belonging to a set of density \(d' > \frac{1}{2} \). Thus, by Pólya's density theorem \([7]\), \(G \) has a singularity on every arc of \(|z| = r_0 \) of opening \(2\pi(1 - d) \) and this is less than \(\pi \). But if \(r_0 = \frac{1}{2} \), the only possible singularities are at \(i/2 \) or \(-i/2\); so \(r_0 > \frac{1}{2} \). Then, by the results on Stirling functionals quoted earlier, there is a function \(f \) in \(K[B] \) such that \(\Delta^{2n} f(-n) = \Delta^{2n} b_{-n} \) for all \(n \), and \(f(z) = \sum \Delta^{2n} b_{-n} (z/2n) C_{z+n-1,n-1} \) convergent for all \(z \). Since \((z/2n) C_{z+n-1,n-1} \) is even for each \(n \), \(f \) is even. It can be shown by induction that \(f(n) = b_n; \ n = 0, \pm 1, \pm 2, \cdots \), using the fact that \(\Delta^{2n} f(-n) = \Delta^{2n} b_{-n} \) for each \(n \). Q.E.D.

\textbf{Theorem 2.} In Theorem 1, if \(d \leq \frac{1}{2} \), then \(f \) is of zero type.

\textbf{Proof.} If \(d \geq \frac{1}{2} \), then \(G(z) = \sum \Delta^n b_{-n} z^{2n} \) has zero coefficients for
all \(n \) belonging to a set of positive integers of density at least \(\frac{3}{4} \). Then, by Pólya's density theorem, \(G \) has a singularity on every arc of its circle of convergence of opening \(\pi/2 \). But \(G \) is regular for all \(z = r e^{i\theta} \) with \(\theta \leq \pi/4 \), so \(G \) is entire. Then in representation (1) of \(f \), the contour \(E \) can be taken as a circle of arbitrarily large radius, so that its image under the map \(\xi = 2 \sinh^{-1} 1/(2t) \) can be made to lie in an arbitrarily small disk about the origin. Therefore \(D(f) \) is the origin, i.e., \(f \) is of zero type. Q.E.D.

Corollary 3. In Theorem 1, if \(d \geq \frac{1}{2} \) and \(b_n = o(n^k) \) as \(n \to \infty \) for some \(k > 0 \), then \(f \) is a polynomial of degree less than \(k \).

Proof. The function \(f \) is of zero type and since \(f \) is even, \(f(n) = o(|n|^k) \) as \(n \to \pm \infty \); so \(f \) is a polynomial of degree less than \(k \) [2, p. 183].

Corollary 4. In Corollary 3, if \(\{b_n\} \) is bounded then it is a constant sequence.

Thus we have obtained theorems analogous to those of Buck, Fuchs, and Agnew referred to at the beginning.

Since, for an odd sequence \(\{c_n\}_{n=-\infty}^{\infty} \), \(\Delta^2 c_{-n} = 0 \) for all \(n \), we have the following:

Corollary 5. If any bounded sequence \(\{b_n\}_{n=-\infty}^{\infty} \) has \(b_0 = 0 \) and \(\Delta^2 b_{-n} = 0 \) for all \(n \) belonging to a set of positive integers of density \(d \geq \frac{1}{2} \), then \(\{b_n\} \) is an odd sequence.

For a sequence \(\{b_n\}_{n=-\infty}^{\infty} \) such that \(b_{-n} = -b_{n-1}; n = 1, 2, 3, \ldots \), we obtain theorems identical with those above except that the even differences are replaced by odd differences \(\Delta^2 b_{-n} \) and the interpolating function is an odd function. The proofs of these theorems are almost the same as the proofs of the above theorems.

Bibliography

Miami University