ON A PROBLEM OF C. BERGE

CHONG-YUN CHAO

The unsolved problem, number 4 on page 251 in [1] states: "Does the sum of two graphs have a kernel (French: noyau) if each of them has a kernel?" The purpose of this note is to give a negative answer. The definitions and notations used here are the same as in [1].

Let \(G_1 = (X_1, \Gamma_1) \) where \(X_1 = \{x_1, x_2, x_3, x_4\} \), and \(\Gamma_1 x_1 = \{x_3, x_4\} \), \(\Gamma_1 x_2 = \{x_3, x_4\} \), \(\Gamma_1 x_3 = \{x_1, x_4\} \), and \(\Gamma_1 x_4 = \emptyset \). Also let \(G_2 = (X_2, \Gamma_2) \) where \(X_2 = \{y_1, y_2\} \) and \(\Gamma_2 y_1 = \{y_2\} \) and \(\Gamma_2 y_2 = \emptyset \). Clearly, \(G_1 \) has a kernel, namely \(\{x_3\} \), and \(G_2 \) has \(\{y_2\} \) as its kernel. Form \(G = G_1 + G_2 = (X_1 \times X_2, \Gamma) \). We claim that \(G \) does not have a kernel. Suppose \(G \) had one, denoted by \(S \), then \((x_4, y_2) \) must belong to \(S \), because \(\Gamma(x_4, y_2) = \emptyset \). By definition of \(S \), none of the nodes in \(\Gamma^{-1}(x_4, y_2) = \{(x_1, y_2), (x_2, y_2), (x_3, y_2), (x_4, y_2)\} \) can be in \(S \). The rest of nodes of \(X_1 \times X_2 \), \((x_1, y_1) \), \((x_2, y_1) \) and \((x_3, y_1) \), generate a complete subgraph (it is also an odd directed cycle), only one of them can be in \(S \). But, no matter which one of them is in \(S \), there is always another one, \((x, y) \), of them which has the property \(\Gamma(x, y) \cap S = \emptyset \) where \((x, y) \in S \). This is a contradiction to the definition of \(S \). Hence, \(G \) does not have a kernel.

Similarly, one can construct a family of such graphs: Take \(G'_1 \) to be a complete directed graph of \(n \) nodes \((n \geq 3) \) with a Hamiltonian cycle (or take \(G'_1 \) to be a directed cycle of \(n \) nodes where \(n \) is odd and \(> 1 \)), and take \(G_1 \) to be \(G'_1 \cup \{x_{n+1}\} \) such that from every node of \(G'_1 \) there is a directed edge toward the node \(x_{n+1} \) and no edge leads from \(x_{n+1} \). Take \(G_2 \) as before. Then each of \(G_1 \) and \(G_2 \) has a kernel, but \(G = G_1 + G_2 \) does not have one by the similar argument as before.

Reference

INTERNATIONAL BUSINESS MACHINES, YORKTOWN HEIGHTS, NEW YORK

Received by the editors January 29, 1962.