Theorem. If $\sum_{n=1}^{\infty} b_n = f$ is a Fourier-Stieltjes-series, then $\sum_{n=1}^{\infty} B_n \sin nt \in L$ and $\sum_{n=1}^{\infty} B_n \cos nt \in L$, where $B_n = n^{-1} \sum_{j=1}^{n} b_j$. Or in symbols: $\mathcal{T}_H \in (dV, L)$.

Sketch of proof. \mathcal{T}_H is a linear bounded transformation from L_* into L_* [10, p. 471] and $\mathcal{T}_H \in (L_*, L_*)$ implies $\sup_n \|T_n\| < \infty$ [2, Theorem 4.4] where $T_n = \sup_{|f|_{L_2} \leq 1} \|T_n f\|_L$ and $T_n f = \sum_{j=1}^{n} (1 - j/(n+1))B_j \sin j$. Since dV is a norm determining manifold in L and since $\|f\|_L = \|f\|_{dV}$ for $f \in L$ we have also $\|T_n\| = \sup_{|f|_{dV} \leq 1} \|T_n f\|_{dV} = O(1) \ (n \to \infty)$.

Received by the editors December 14, 1961.

1 The research resulting in this paper was supported by the National Science Foundation (G 14876) and the National Research Council of Canada.
and therefore $T_H \in (dV_1, dV_2)$ [2, Theorem 4.5]. (Correspondingly we get $T_H \in (dV_1, dV_3)$ but this is of no interest here.)

By Kinukawa and Igari [6, p. 274] we have $T_H \in (L_1, L_2)$ and since $T_H \in (L_1, L_3)$ we have $T_H \in (L_1, L)$. The proof that $T_H \in (L_1, L)$ implies $T_H \in (dV_1, dV)$ is exactly the same as the proof that $T_H \in (L_1, L)$ implies $T_H \in (dV_1, dV_3)$. Since $dV = L$ [8; 11, p. 285] we have $T_H \in (dV_1, L)$.

Remarks. 1. Let V be the space of Fourier coefficients of functions of bounded variation. From the fact that $b \in V$ implies $\sum_{n=1}^{\infty} |b_n| < \infty$ [5; 11, p. 286] it follows with our theorem that $b \in dV$ implies $\sum_{n=1}^{\infty} n^{-2} |\sum_{j=1}^{n} b_j| < \infty$.

2. As remarked by Loo [7, p. 270] we have $T_H \in (L_1, L_3)$.

References

4. G. H. Hardy, Notes on some points in the integral calculus. LXVI. The arithmetic mean of a Fourier constant, Mess. of Math. 58 (1928), 50–52.
8. F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, Quatrième congrès des math. scandinaves, Stockholm (1916), 27–44.

Northwestern University and University of Western Ontario