ON THE ω^*-SEQUENTIAL CLOSURE OF A CONE

R. D. McWILLIAMS

1. If X is a real Banach space and X^{**} the second conjugate space of X, then for each subset A of X^{**} let $K_{\omega^*}(A)$ be the ω^*-sequential closure of A in X^{**}; thus $F \in K_{\omega^*}(A)$ if and only if there is a sequence $\{F_n\}$ in A such that $F(f) = \lim_{n} F_n(f)$ for all $f \in X^*$. If J_X is the canonical mapping from X into X^{**}, then $K_{\omega^*}(J_X X)$ is closed in the norm topology of X^{**} [1]. In the present paper it will be shown that if P is a norm-closed cone in X, then $K_{\omega^*}(J_X P)$ is norm-closed in X^{**}, but $K_{\omega^*}(K_{\omega^*}(J_X P))$ need not be norm-closed in X^{**}.

2. If s is a bounded real function on $[0, 1]$, let $\|s\| = \sup_{0 \leq t \leq 1} |s(t)|$. If $\mathcal{S} = \{s_k\}$ is a bounded sequence of functions, i.e., if each s_k is bounded and $\sup_{u \in u} \|s_u\|$ is finite, let $\|\mathcal{S}\| = \sup_{u \in u} \|s_u\|$. If Q is a set of functions, let $L(Q)$ be the set of all functions x such that x is the pointwise limit of a bounded sequence in Q. Let α be the collection of all double sequences $A = \{a_{ik}\}$ of non-negative numbers such that for each k the following conditions are satisfied: (1) $a_{ik} = 0$ for all $i < k$ and for all but a finite number of $i \geq k$; and (2) $\sum_i a_{ik} = 1$. If $\mathcal{S} = \{s_k\}$ is a sequence of functions and $A \in \alpha$, let $T_A S$ be the sequence $\{s_{ik}\}$ such that $s_{ik} = \sum_i a_{ik} s_{i}$ for each k. It is clear that (1) T_A is a linear operator; (2) if \mathcal{S} is bounded, then so is $T_A S$ and $\|T_A S\| \leq \|S\|$; (3) if \mathcal{S} is pointwise convergent, then $T_A S$ is pointwise convergent to the same limit.

Lemma 1. If R and S are bounded sequences in the space $C[0, 1]$ of continuous real functions on the interval $[0, 1]$ and R and S converge pointwise to functions r and s respectively, then for each $\epsilon > 0$ there exists $A \in \alpha$ such that $\|T_A R - T_A S\| < \|r - s\| + \epsilon$.

Proof. The sequence $R - S$ is bounded and converges pointwise to $r - s$. Hence by [1; proof of Lemma 1] there exists for each $\epsilon > 0$ an A having the required property.

Lemma 2. Let P be a cone in $C[0, 1]$, let $\{z_n\}$ be a sequence in $L(P)$, and let z be a bounded function such that $\lim_{n \to \infty} \|z_n - z\| = 0$. Then $z \in L(P)$.

Proof. It may be assumed that $\|z_n - z\| < 2^{-n}$ for each n. For each

Presented to the Society, February 22, 1962 under the title ω^*-sequential closure of a cone in a Banach space; received by the editors December 4, 1961.
there is a bounded sequence \(S_n = \{ s_{nk} \} \) in \(P \) which converges point-wise to \(z_n \); by Lemma 1 it may be assumed that \(\| S_n \| < \| z \| + 2^{-n} \).

By induction on \(n \) it can now be shown that for each \(n \) and for each \(i \leq n \) there exists a bounded sequence \(S_{in} = \{ s_{ink} \} \) in \(P \) such that

1. \(\lim_{k \to \infty} s_{ink}(t) = z_i(t) \) for each \(t \in [0, 1] \),

2. \(\lim_{k \to \infty} s_{ink}(t) = z_i(t) \) for each \(t \in [0, 1] \),

and

3. \(\| S_{in} - S_{jn} \| < 2^{-i} \) if \(i < j \leq n \).

For \(n = 1 \), the sequence \(S_{11} \) can be taken to be \(S_1 \). For \(n > 1 \), if \(S_{i, n-1} \) has been obtained for each \(i \leq n - 1 \), Lemma 1 may be applied \((n - 1)\) times in succession to obtain \(A_1, \ldots, A_{n-1} \subseteq \mathcal{A} \) such that

\[
\| T_{A_i} T_{A_{i-1}} \cdots T_{A_1} (S_{i, n-1} - S_n) \| < 2^{-i}
\]

for each \(i < n \). The induction step is completed by letting \(S_{in} = T_{A_i} T_{A_{i-1}} \cdots T_{A_1} S_{i, n-1} \).

Now let \(S = \{ s_k \} \) be the bounded sequence in \(P \) such that \(s_k = s_{kkk} \) for each \(k \). Let \(t \in [0, 1] \) and \(i \in \omega \). Then for every \(k \geq i \),

\[
| s_k(t) - z(t) |
\]

is equal to

\[
| s_{kkk}(t) - s_{ikk}(t) | + | s_{ikk}(t) - z_i(t) | + | z_i(t) - z(t) |
\]

\[< 3 \cdot 2^{-i} + | s_{ikk}(t) - z_i(t) | .
\]

Since by construction \(\lim_{k \to \infty} s_{ikk}(t) = z_i(t) \), it follows that \(\lim_{k \to \infty} s_k(t) = z(t) \) for every \(t \), so that \(z \in L(P) \).

Theorem 1. If \(P \) is a norm-closed cone in a real Banach space \(X \), then \(K_X(]X P) \) is norm-closed in \(X^{**} \).

Proof. Let \(F \in X^{**} \) be the limit in norm of a sequence \(\{ F_n \} \subset K_X(]X P) \). Thus each \(F_n \) is the \(\omega^* \)-limit of a bounded \([3, p. 209] \) sequence \(J_XS_n \), where \(S_n = \{ s_{nk} \} \subset P \).

Case 1. First suppose that \(X \) is a closed subspace of \(C[0, 1] \). For each \(t \in [0, 1] \) let \(f_t \in X^* \) be defined by \(f_t(s) = s(t) \) for all \(s \in X \). Then for each \(n \) it follows that \(F_n(f_t) = \lim_{k \to \infty} s_{nk}(t) \). If \(z_n \) is defined on \([0, 1] \) by \(z_n(t) = F_n(f_t) \), it follows that \(z_n \in L(P) \) and moreover, since \(\| f_t \| \leq 1 \) for each \(t \), that \(\| z_n - z_m \| \leq \| F_n - F_m \| \) for all \(n \) and \(m \), so that the function \(z(t) = \lim_{n \to \infty} z_n(t) \) exists and belongs to \(L(P) \) by Lemma 2. Thus there is a bounded sequence \(\{ s_k \} \subset P \) which converges point-wise to \(z \). Since \(X \) is a subspace of \(C[0, 1] \), for each \(f \in X^* \) there is a finite regular signed Borel measure \(\mu_f \) on \([0, 1] \) such that \(f(x) \)
for every \(x \in X \) [3, p. 397]. Hence

\[
F_n(f) = \lim_{k \to \infty} f(s_{nk}) = \int_0^1 s_n d\mu_f
\]

for every \(n \), and therefore

\[
F(f) = \lim_{n \to \infty} \int_0^1 s_n d\mu_f = \int_0^1 \mu_f = \lim_{n \to \infty} \int_0^1 s_n d\mu_f = \lim_{k \to \infty} f(s_k),
\]

so that \(F \) is the \(\omega^* \)-limit of \(\{ J x s_k \} \).

Case 2. If \(X \) is an arbitrary real Banach space, let \(Y \) be the norm-closed subspace and \(Q \) the norm-closed cone in \(X \) generated by \(\{ s_{nk} : n, k \in \omega \} \). Since \(Y \) is separable, there is an equivalence mapping \(E \) from \(Y \) onto a closed subspace \(Z \) of \(C[0,1] \). Since each \(F_n \in K_x(J_x P) \), for each \(n \) an element \(g_n \in Y^{**} \) is unambiguously defined by

\[
G_n(f | Y) = F_n(f) \quad \text{for all } f \in X^*.
\]

The sequence \(\{ G_n \} \) is clearly Cauchy since each \(g \in Y^* \) has an extension \(f \in X^* \) such that \(\| f \| = \| g \| \). Since \(G_n \in K_Y(Q) \), it follows that the sequence \(\{ E^{**} G_n \} \) is a Cauchy sequence in \(K_Z(J_Z E Q) \) converging in norm to \(E^{**} G \). By Case 1 there is a bounded sequence \(\{ z_k \} \subset E Q \) such that \(\{ J x s_k \} \) is \(\omega^* \)-convergent to \(E^{**} G \) in \(Z^{**} \). Finally, it is straightforward to verify that the sequence \(\{ J x E^{-1} z_k \} \subset J x P \) is \(\omega^* \)-convergent to \(F \) in \(X^{**} \).

3. For each \(t \in [0,2] \) and \(q \leq \omega \) let \(f_{t,q} \in C[0,2] \) be defined by

\[
f_{t,q}(t) = \max \left[0, 1 - 2^q \right] t - t_q \quad \text{for all } t \in [0,2].
\]

If \(p, i, \) and \(j \) are positive integers, let \(s_{pi} = 2^{-p} i \) and \(t_j = 2 - 2^{-j} \). Now if \(a \geq 1 \) let \(X^a \) be the norm-closed subspace of \(C[0,2] \) generated by the set \(G^a = \{ x_{pq}^a : p, q \in \omega \} \), where

\[
x_{pq}^a(t) = \max \left[\max_{1 \leq j \leq p} f_{s_{pi}, p+q}(t), \max_{p \leq j < p+q} f_{s_{pi}, j}(t) \right].
\]

Lemma 3. If \(P^a \) is the norm-closed cone in \(X^a \) generated by \(\{ x_{pq}^a : p, q \in \omega \} \), then the function \(x_a \) defined by

\[
x_a(t) = \lim_{p \in \omega} \lim_{q \in \omega} x_{pq}^a(t)
\]

is an element of \(L(L(P^a)) \) with \(\| x_a \| = 1 \), but if \(\{ y^h \} \) is a bounded sequence in \(L(P^a) \) converging pointwise to \(x_a \), then \(\lim \sup_{h \in \omega} \| y^h \| \geq a \).

Proof. It is trivial that \(x_a \in L(L(P)) \) and \(\| x_a \| = 1 \). Indeed, \(x_a \) is
the characteristic function of the set \(D = \{ s_{\pi i} : p \in \omega, i < 2^p \} \). If \(\{ y^k \} \) is an arbitrary bounded sequence in \(L(P^a) \) converging pointwise to \(x_0 \), then since the set of all finite linear combinations of the \(x_{pq}^a \) with non-negative coefficients is dense in \(P^a \), each \(y^k \) is the pointwise limit of a bounded sequence \(\{ y^{hk} \}_{k=1}^\infty \), where each \(y^{hk} \) has the form

\[
y^{hk}(t) = \sum_{p \geq 1; q \geq 1} a^{hk}_{pq} x_{pq}(t),
\]

where each \(a^{hk}_{pq} \) is non-negative and for each pair \((h, k)\) only a finite number of the \(a^{hk}_{pq} \) are positive. Without changing the value of \(\limsup_{k \to \omega} \| y^k \| \), it may be assumed that \(y^{hk}(\frac{1}{2}) = 1 \) for all \((h, k)\).

Let \(\epsilon > 0 \) be given. For each \(H \in \omega \) let

\[
S_H = \{ t \in [0, 1] : t \in D, y^h(t) < \epsilon \text{ for all } h \geq H \}.
\]

Since \(\bigcup_{H \in \omega} S_H \) is of the second category in \([0, 1]\), there exists an \(H \) such that \(S_H \) is dense in a closed interval \(I \). Choose an arbitrary \(s_{p_0 i_0} \in D \cap (\text{int } I) \) with \(i_0 \) odd; then there exists \(H_0 \geq H \) such that \(y^h(s_{p_0 i_0}) > 1 - \epsilon \) for all \(h \geq H_0 \). Since there exist points of \(S_H \) between \(s_{p_0 i_0} \) and every \(s_{pi} \) such that \(p < p_0 \), it is clear that for every \(h \geq H_0 \), there exists \(K_h \) such that for every \(k \geq K_h \),

\[
\sum_{p \geq 1; q \geq 1} a^{hk}_{pq} y^k(s_{p_0 i_0}) - \sum_{p < p_0; q \geq 1} a^{hk}_{pq} s_{pq}(s_{p_0 i_0}) > (1 - \epsilon) - 2\epsilon.
\]

Now fix \(h \geq H_0 \). Since \(y^h \) is a Baire function of the first class, there exists a point \(\sigma H \in I \) such that \(y^h|I \) is continuous at \(\sigma H \) \([2, p. 143]\); hence there is a closed interval \(J \subset I \) such that \(y^h(t) < 2\epsilon \) for all \(t \in J \). Choose \(s_{p_1 i_1} \in D \cap (\text{int } J) \) with \(p_1 > p_0 \); then there exists \(K' \geq K_h \) such that for every \(k \geq K' \),

\[
\sum_{p \geq 1; q \geq 1} a^{hk}_{pq} y^k(s_{p_1 i_1}) < 2\epsilon.
\]

Next, by (3.2), for every \(t \in [0, 1] \) and every \(k \),

\[
y^{hk}(t) \geq \sum_{p \geq 1; q \geq 1} a^{hk}_{pq} (1 - 2^{p+q} | t - s_{p_0 i_0} |) \geq \sum_{p \geq 1; q \geq 1} a^{hk}_{pq} (1 - 2^{p_1} | t - s_{p_0 i_0} |).
\]

There exists \(t_0 \in S_H \) such that \(| t_0 - s_{p_0 i_0} | < 2^{-(2p_1+1)} \), and there exists \(K_h' \geq K_h ' \) such that \(y^{hk}(t_0) < \epsilon \) whenever \(k \geq K_h ' \). Hence, by (3.8) with \(t = t_0 \),
for all \(k \geq K'' \). Therefore, by (3.6), (3.7), and (3.9),

\[
(3.10) \quad \sum_{p \in S \subset P; \xi \in P} a_{pq} > 1 - 7\varepsilon
\]

for all \(k \geq K'' \), so that \(\|y_n\| \geq \lim_{k \to \infty} y^{(k)}(t_p) \geq a(1 - 7\varepsilon) \). Since \(\varepsilon \) may be an arbitrarily small positive number, it follows that \(\lim_{s_{k \to \infty}} \|y_n\| \geq a \).

Theorem 2. There exist a norm-closed subspace \(X \) of \(\mathfrak{C}[0, 1] \) and a norm-closed cone \(P \subset X \) such that \(K_X(K_X(J_XP)) \) is not norm-closed in \(X^{**} \).

Proof. For each \(r \in \omega \) and each real function \(x \) defined on \([0, 2]\) let \(E_r x \) be the function defined on \([0, 1]\) by

\[
(3.11) \quad (E_r x)(t) = \begin{cases} x(2^{r+1}[t - 2^{-r}]) & \text{if } 2^{-r} \leq t \leq 2^{1-r}, \\ 0 & \text{for all other } t. \end{cases}
\]

Recalling the notation of Lemma 3 with \(a = 2^r \), observe that \(E_r X^{**} \) is an equivalence mapping onto a subspace of \(\mathfrak{C}[0, 1] \), since \(x(0) = x(2) = 0 \) for all \(x \in X^{**} \). Let \(X \) be the closed subspace and \(P \) the closed cone in \(\mathfrak{C}[0, 1] \) generated by \(\cup_{r \in \omega} \{ E_r P^{**} \} \). For each \(r \) it is clear that \(E_r x \in L(L(P)) \) and hence that each \(F_r \in X^{**} \) can be unambiguously defined by

\[
(3.12) \quad F_r(f) = \int_0^1 (E_r x_0) d\mu_f \quad \text{for all } f \in X^*;
\]

then \(F_r \in K_X(K_X(J_XP)) \) and \(\|F_r\| = 1 \). Now let \(F = \sum_{r \geq 1} 2^{-r} F_r \); thus \(F \) belongs to the closure of \(K_X(K_X(J_XP)) \) in the norm topology.

Suppose \(F \in K_X(K_X(J_XP)) \). Then there is a bounded sequence \(\{ G_h \} \subset K_X(J_XP) \) whose \(w^\ast \)-limit is \(F \). For each pair \((r, h) \) let \(z_{r h} \) be the function on \([0, 2]\) defined by

\[
(3.13) \quad z_{r h}(t) = G_h(f_{2^{-r} t + 2^{-r} - 1}) \quad \text{for } t \in [0, 2],
\]

where \(f_u \in X^* \) is defined by \(f_u(x) = x(u) \) for \(x \in X \) and real \(u \). Then \(\{ z_{r h} \}_{r = 1}^{\infty} \) is a bounded sequence in \(L(P^{**}) \) which converges pointwise on \([0, 2]\) to \(2^{-r} z_{r 0} \). By Lemma 3, \(\lim_{s_{k \to \infty}} \|z_{r h}\| \geq 2^r \), and hence \(\lim_{s_{k \to \infty}} \|G_h\| \geq 2^r \). Since \(r \) is an arbitrary positive integer, the sequence \(\{ G_h \} \) is unbounded, which gives a contradiction. Thus \(F \notin K_X(K_X(J_XP)) \) and the theorem is proved.
Remark. The author has not been able to determine whether \(K_x(K_x(J_xX)) \) can fail to be norm-closed in \(X^{**} \).

References

Florida State University