where \(\tau = 1 - y \). Now as \(y \to 1 \), \(\tau \to 0 \), and it is known \[2\] that the last integral approaches \(f(x) \) almost everywhere as \(\tau \to 0 \). This proves (10).

Bibliography

Cornell University and Purdue University

ON HYPONORMAL OPERATORS

TSUYOSHI ANDÔ

A bounded linear operator \(T \) on a Hilbert space \(\mathcal{H} \) is said to be **hypotormal** in case \(\| T^*x \| \leq \| Tx \| \) for all \(x \in \mathcal{H} \). This short note gives a negative answer to the question raised in [1, p. 188]: "Does there exist a completely continuous hypotormal operator which is not normal?"

Theorem. If \(T \) is hypotormal, \(\| T^n \| = \| T \|^n \) for all \(n \).

Proof. It is sufficient to prove that \(\| T \| = 1 \) implies \(\| T^n \| = 1 \) for all \(n \). Consider the following property:

\((C_n) \) For every \(\epsilon > 0 \), there exists a unit vector \(x \) such that

\[\| T^nx \| \geq 1 - \epsilon \quad \text{and} \quad \| T^nx - T^*T^{n+1}x \| \leq \epsilon. \]

\((C_n) \) just says that 1 is an approximate proper value for the self-adjoint operator \(T^*T \) (see [1, p. 170]). \((C_n) \) obviously implies \(\| T^* \| = 1 \). Now suppose that \((C_n) \) is valid. For \(\epsilon > 0 \) and \(x \) (indicated in \((C_n) \))

\[
\| T^{n+1}x - T^*T^{n+1}x \|^2 \\
= \| T^{n+1}x \|^2 - 2\| T^{n+2}x \|^2 + \| T^*T^{n+2}x \|^2 \\
\leq \| T^nx \|^2 - \| T^{n+2}x \|^2 \quad \text{(because} \quad \| T \| = \| T^* \| = 1) \\
\leq \| T^nx \|^2 - \| T^*T^{n+1}x \|^2 \quad \text{(because} \quad T \text{ is hypotormal)} \\
\leq \| T^nx - T^*T^{n+1}x \| \{ \| T^nx \| + \| T^*T^{n+1}x \| \} \leq 2\epsilon \quad \text{by} \quad (C_n).
\]

Received by the editors February 12, 1962.
Also
\[\| T^{n+1}x \| \geq \| T^{n+2}x \| \geq \| T^* T^{n+1}x \| \]
\[\geq \| T^n x \| - \epsilon \geq 1 - 2\epsilon \text{ by (C").} \]

Since \(\epsilon > 0 \) is arbitrary, (\(C_{n+1} \)) is valid.

Corollary 1. Every nonzero hyponormal operator has a nonzero element in its spectrum.

This follows from the above theorem via the known fact that the spectral radius of an operator \(T \) is equal to \(\lim_{n \to \infty} \sqrt[n]{\| T^n \|} \).

Corollary 2. Every completely continuous hyponormal operator is normal.

Proof. Let \(T \) be hyponormal and completely continuous. In view of a known property of a hyponormal operator (see [1, p. 168]) it is sufficient to prove that the set of all proper vectors for \(T \) is total, in other words, the set \(\mathcal{M} \) of all vectors orthogonal to every proper vector consists of only the null vector. Since \(\mathcal{M} \) reduces \(T \) (see [1, p. 168]), the restriction of \(T \) to \(\mathcal{M} \), denoted by \(T|\mathcal{M} \), is also hyponormal. The spectrum of \(T|\mathcal{M} \) consists of 0 only, for \(T|\mathcal{M} \) is completely continuous and has no proper value by the definition of \(\mathcal{M} \). By the above corollary this means that \(T|\mathcal{M} = 0 \) or \(\mathcal{M} = \{0\} \). The former is obviously excluded.

Reference

HOKKAIDO UNIVERSITY, SAPPORO, JAPAN