CONDITIONS FOR A MATRIX TO COMMUTE WITH ITS INTEGRAL

IRVING J. EPSTEIN

1. Introduction. Let $U(t)$ be an $n \times n$ matrix whose elements are continuous functions of a parameter t. We shall find necessary and sufficient conditions for the relation

$$U(t) \int_0^t U(s)ds = \left(\int_0^t U(s)ds \right) U(t)$$

(1.1)

to hold in an interval $0 \leq t \leq t_0$, where t_0 is so small that throughout the interval $[0, t_0]$ the Jordan canonical form of $U(t)$ has the same form. That is, its off-diagonal elements do not change in the interval.

Matrices $U(t)$ satisfying (1.1) are of interest for various reasons; see, for instance, [1, p. 278]. We may mention two occasions where (1.1) occurs. Firstly, consider a system of n homogeneous linear differential equations of the first order for n unknown functions with $U(t)$ as the matrix of coefficients. If we consider the unknown functions as components of a vector, and if we form a matrix Y, the n columns of which are n linearly independent solutions of our system, then we have for $Y = Y(t)$:

$$\dot{Y} = UY, \quad Y(0) = I,$$

(1.2)

where a dot denotes the derivative with respect to t and where I denotes a nonsingular matrix which we may choose to be the unit matrix. If (1.1) holds, then (1.2) can be solved in terms of quadratures. In fact, we have

$$Y = \exp \int_0^t U(s)ds.$$

(1.3)

Secondly, consider the following problem in the theory of systems with periodic coefficients. Let $W(t)$ be an $n \times n$ matrix depending continuously on t such that, for a constant ω,

$$W(t + \omega) = W(t),$$

(1.4)

and also

$$W(-t) = -W(t).$$

(1.5)

Then it has been shown in special cases by Demidovic [2] and, more
generally, by the author [3] that a matrix $Z_0(t)$ satisfying
\begin{equation}
\dot{Z}_0 = WZ_0, \quad Z_0(0) = I,
\end{equation}
is periodic with period ω, i.e., $Z_0(t+\omega) = Z_0(t)$. The matrices $W(t)$ form a linear space under addition.

We ask whether we can extend this linear space such that a system of the type (1.6) still will have periodic solutions. A partial answer to this question is given by the following remark: Let W be a fixed matrix satisfying (1.4) and (1.5). Let $E(t)$ be such that
\begin{equation}
E(t + \omega) = E(t), \quad E(-t) = E(t).
\end{equation}
Then the system
\begin{equation}
\dot{Z} = (W + \epsilon E)Z, \quad Z(0) = I
\end{equation}
will have solutions with the property
\begin{equation}
Z(t + \omega) = Z(t),
\end{equation}
for all values of ϵ if the matrix $A(t)$ defined by
\begin{equation}
A(t) = Z_0^{-1}(t)E(t)Z_0(t)
\end{equation}
commutes with its integral. The proof is based on the standard procedure of expanding $Z(t)$ in a power series in ϵ.

2. Matrices commuting with their derivatives. Instead of $U(t)$ we introduce
\begin{equation}
V(t) = \int_0^t U(s) \, ds,
\end{equation}
and assume that
\begin{equation}
\dot{V}V - V\dot{V} = 0.
\end{equation}
Consider an interval (t_1, t_2) such that, for $t_1 \leq t \leq t_2$, there exists a differentiable nonsingular matrix $P(t)$ such that
\begin{equation}
V(t) = P^{-1}(t)J(t)P(t),
\end{equation}
where $J(t)$ is in Jordan canonical form. This means that
\begin{equation}
J = \begin{bmatrix}
C_1 & 0 & \cdots & 0 \\
0 & C_2 & \cdots & \\
& & \ddots & \\
0 & \cdots & \cdots & C_r
\end{bmatrix},
\end{equation}
where the submatrices $C_p(t)$, $p = 1, \ldots, r$, are $n_p \times n_p$ matrices of the form.
(2.4) \[C_p = \alpha_p(t)I_p + \delta_p E_p. \]

Here \(\alpha_p(t) \) is a differentiable function of \(t \), \(I_p \) is the \(np \times np \) unit matrix, \(\delta_p \) is 0 or 1, and \(E_p \) is the \(np \times np \) matrix with elements \[e_{\mu,\nu}, \quad \nu, \mu = 1, \cdots, np, \]

and
\[
(2.5) \quad e_{\mu,\nu+1} = 1, \quad e_{\mu,\mu} = 0 \quad \text{for} \quad \mu - \nu \neq 1.
\]

We shall assume that the interval \((t_1, t_2) \) is such that no difference \(\alpha_p - \alpha_\sigma \) vanishes in a subinterval unless it vanishes identically.

We may assume that, if \(\alpha_p - \alpha_\sigma \) vanishes identically, for \(\rho \neq \sigma \), either \(\delta_\rho \neq 0 \) or \(\delta_\sigma \neq 0 \). Otherwise, we could contract \(C_p \) and \(C_\sigma \) into a single diagonal matrix.

Now we have:

Theorem 1. The general \(n \times n \) matrix \(V(t) \) satisfying (2.1) and having a Jordan canonical form determined by (2.3), (2.4) with constant \(np, \delta_p \) for \(t_1 \leq t \leq t_2 \) is obtained by finding all \(n \times n \) matrices \(X \) satisfying
\[
(2.6) \quad J(XJ - JX) - (XJ - JX)J = 0,
\]

determining the nonsingular solutions \(P(t) \) of the matrix differential equation
\[P = XP, \]
and forming
\[V = P^{-1}JP. \]

The matrices \(X \) form a linear space (under addition) which depends only on the \(np, \delta_p \), and the set of pairs of subscripts \((\rho, \sigma) \) for which \(\alpha_\rho - \alpha_\sigma \) vanishes identically.

Proof. We observe that, trivially,
\[
(2.7) \quad JJ = \dot{J}J.
\]

By differentiating (2.2), we find
\[
(2.8) \quad \dot{V} = P^{-1}JP + P^{-1}JP + P^{-1}JP.
\]

Because of \(P^{-1}P = I \) we have
\[\dot{P}^{-1}P + P^{-1}P = 0, \quad \dot{P}^{-1} = -P^{-1}PP^{-1}, \]
and therefore from (2.2), (2.8), with \(X = \dot{P}P^{-1} \):
\[\dot{VV} - VV = P^{-1}\{-XJ + J + JX\}JP - P^{-1}\{-XJ + J + JX\}P = 0. \]
If we multiply this last equation by \(P \) on the left and \(P^{-1} \) on the right and then make use of (2.7) we get (2.6). We note that the solutions \(X \) of (2.6) form a linear space. In the next section, we shall determine a basis for the linear space of the matrices \(X \) and, incidentally, shall also prove that this space does not depend on the functions \(\alpha_p(t) \) but merely on the discrete parameters mentioned in Theorem 1.

Corollary. A system of linear differential equations which, in matrix form, can be written as

\[
\dot{Y} = UY
\]

where the coefficient matrix \(U = \dot{V} \) has the property \(UV = VU \), can always be transformed into a system

\[
\dot{Z} = (X + J + JX - XJ)Z,
\]

where \(X, J \) are defined as in Theorem 1. The transformation to be used is, of course, \(Z = PY \), where \(P \) is defined as in Theorem 1.

3. The space of matrices \(X \). The solutions \(X \) of (2.6) may be written as matrices which are composed of submatrices \(X_{p,\sigma}, p, \sigma = 1, \ldots, \tau \), where \(X_{p,\sigma} \) is a matrix with \(n_p \) rows and \(n_\sigma \) columns and

\[
X = (X_{p,\sigma})
\]

with the natural arrangement of the submatrices. From (2.6) we find the equations

\[
C_p^2 X_{p,\sigma} + X_{p,\sigma} C_\sigma^2 - 2C_p X_{p,\sigma} C_\sigma = 0,
\]

where \(C_p \) is given by equation (2.4).

If we let \(x_{k,l} \) denote the element in the \(k \)th row and \(l \)th column of \(X_{p,\sigma} \) then (3.2) gives us the scalar equations

\[
(a_p - \alpha_\sigma)^2 x_{k,1} + 2\delta_\sigma (a_p - \alpha_\sigma) x_{k,1+1} + 2\delta_\sigma (a_\sigma - \alpha_p) x_{k,1+1} + 2\delta_\sigma x_{k,1-1} - 2\delta_\sigma x_{k,1+1,1-1} = 0
\]

where

\[
k = 1, 2, \ldots, n_p, \quad l = 1, 2, \ldots, n_\sigma,
\]

and where we define \(x_{p,q} = 0 \) if \(p > n_p \) or \(q < 1 \). Equations (3.3) have to be analyzed for various cases. We may summarize the results as follows:

Theorem 2. The matrix \(X_{p,\sigma} \) has one of the following structures:

CASE 1. \(\alpha_p - \alpha_\sigma \) does not vanish identically (and, therefore, not in any subinterval of \((t_1, t_2) \)). Then \(X_{p,\sigma} \) is identically zero.
Case 2. \(\alpha_p - \alpha_q = 0, \delta_p = 0, \delta_q = 1 \). Then the last two columns of \(X_{p,q} \) are arbitrary, but all other elements of \(X_{p,q} \) vanish identically.

Case 3. \(\alpha_p - \alpha_q = 0, \delta_p = 1, \delta_q = 0 \). Then the first two rows of \(X_{p,q} \) are arbitrary but all other elements of \(X_{p,q} \) vanish identically.

Case 4. \(\alpha_p - \alpha_q = 0, \delta_p = \delta_q = 0 \). Then we may assume \(\rho = \sigma \) (see remarks before Theorem 1), and \(X_{p,q} \) is arbitrary.

Case 5. \(\alpha_p - \alpha_q = 0, \delta_p = \delta_q = 1 \). Denoting the elements of \(X_{p,q} \) by \(x_{l,k} \), where \(l = 1, \ldots, n_p \) and \(k = 1, \ldots, n_q \), and if \(n_p > n_q \), then the first two rows of \(X_{p,q} \) are arbitrary and \(X_{p,q} \) has the appearance indicated below:

\[
\begin{array}{ccccccc}
 x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & \cdots \\
 x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & \cdots \\
 0 & 2x_{21} & 2x_{22} - x_{11} & 2x_{23} - x_{12} & 2x_{24} - x_{13} & \cdots \\
 0 & 0 & 3x_{21} & 3x_{22} - 2x_{11} & 3x_{23} - 2x_{12} & \cdots \\
 0 & 0 & 0 & 4x_{21} & 4x_{22} - 3x_{11} & \cdots \\
 0 & 0 & 0 & 0 & 5x_{21} & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

If \(n_p < n_q \), the role of rows and columns has to be exchanged, and if \(n_p = n_q \), the \(X_{p,q} \) is triangular, but the same shape as above, except that \(x_{21} = 0 \).

Only Case 5 requires a more detailed analysis. However, once the explicit form of \(X \) stated above is known, it can be verified with a moderate amount of calculations which will be omitted here.

Acknowledgment. I acknowledge with pleasure the advice given me by Professor W. Magnus of New York University in the preparation of this paper.

References

Evans Signal Laboratory, Ft. Monmouth