In this paper we prove two theorems relating positive definite measures to induced representations. The first shows how the injection of a positive definite measure on a topological group H into a containing locally compact group G in which H is closed gives rise to induced representations. The second is another version of Mackey's imprimitivity theorem, along the lines of Loomis' proof [5]. We feel this is justified on several grounds. Firstly, our proof is simpler than Loomis'. We make no use of the Radon-Nikodym theorem nor of quasi-invariant measures. Secondly, we do not assume in advance that our system of imprimitivity is based on the reduced algebra of Borel sets in G/H. Instead, this fact is seen as a consequence of the theorem. Finally, the statement and proof of Theorem 2 in [5] are in need of minor repairs. Using Loomis' notation, the induced representation space of V is spanned, not by the set $\{f_u : u \in H\}$, but rather by the set $\{[E]f_u : u \in H, E \text{ a Borel subset of } G/K\}$. Formula (8) must then be replaced by formula (11) in the statement of the theorem. The algebra $C_0(S\times G)$ used in the present paper may be looked upon as a device for accomplishing these changes.

All nonobvious definitions, notations, and conventions are those of [1].

1. Let $f, g \in C_0(G)$. Define $f \circ g$ and f^* by

$$(f \circ g)(x) = \int f(y)g(xy^{-1})\,dy$$

and

$$f^*(x) = [f(x^{-1})^-]^{-\delta_0(x)^{-1}}.$$

$C_0(G)$, equipped with \circ, \ast, and the usual inductive limit topology, is a topological \ast-algebra. This is a group algebra with multiplication defined in a way differing slightly from the usual one. If $x \in G$, we define $(R(x)f)(y) = f(yx)$. The map $(x, f) \mapsto R(x)f$ is continuous.

A measure μ on G such that $\mu(f^* \circ f) \geq 0$ for all $f \in C_0(G)$ is called positive definite. Given such a μ, one defines a pseudo-Hilbert inner product on $C_0(G)$ by setting $(f, g)_{\mu} = \mu(g^* \circ f)$. One then completes
$C_0(G)$ to get a Hilbert space \mathcal{H}_μ and, for each $x \in G$, extends $R(x)$ to a unitary operator $R_\mu(x)$ on \mathcal{H}_μ. R_μ is then a unitary representation of G on \mathcal{H}_μ.

Theorem 1. Let H be a closed subgroup of the locally compact group G. Let μ be a positive definite measure on H. Let ν be the measure on G obtained by injecting $\frac{1}{2}\mu$ into \mathcal{H}_μ. Then ν is positive definite. Moreover, R_μ is unitarily equivalent to U^{R_μ} via the closure V of the map $f \mapsto f$ of $C_0(G)$, where, for $x \in G$, $f(x)$ is the vector in \mathcal{H}_μ defined by $f(x)(\xi) = \delta_{H}(\xi)^{-1/2} \delta_{G}(\xi)^{1/2} f(x)$.

Proof. Let $f \in C_0(G)$ and choose $h \geq 0$ in $C_0(G)$ such that $\int_H h(\xi) d\xi = 1$ for all $x \in G$ such that $f(x) \neq 0$. Then

$$
\int (f \ast f)(\xi) \delta_{H}(\xi)^{-1/2} \delta_{G}(\xi)^{1/2} d\mu(\xi)
= \int \int \int h(\eta) f(\xi) \delta_{H}(\xi)^{-1/2} \delta_{G}(\xi)^{1/2} d\eta d\mu(\xi)
= \int \int \int h(x) [f(\eta^{-1} x)] \delta_{H}(\eta)^{-1/2} \delta_{G}(\eta)^{1/2} d\eta d\mu(\xi)
= \int \int \int h(x) [f(\eta x)] \delta_{H}(\eta)^{-1/2} \delta_{G}(\eta)^{1/2} \delta_{H}(\xi)^{-1} \delta_{G}(\xi)^{-1} d\eta d\mu(\xi)
= \int \int \int h(x) [f(x)] \delta_{H}(\xi)^{-1} \delta_{G}(\xi)^{-1} d\eta d\mu(\xi)
= \int \int \int h(x) (f(x)(\eta) - f(x(\eta))) d\eta d\mu(\xi)
= \int h(x)(f(x)(\eta)) d\eta d\mu(\xi)
\geq 0.
$$

Thus ν is positive definite.

It is trivial to verify that $f \in \mathcal{H}_\theta$ (see [1, §2] for the definition). Therefore f is in the Hilbert space \mathcal{H} of U^{R_μ}. Moreover, the above equations, together with the definition of the norm in \mathcal{H}, show that $\|f\| = \|f\|$. Hence the isometry V is well defined. Since V clearly sets up an equivalence between R_μ and a subrepresentation of U^{R_μ}, we only have left to show that V is onto.

Let $g \in C_0(G)$, $u \in C_0(H)$. Regarding u as a member of \mathcal{H}_μ, we may form

$$
e(g, u)(x) = \int_H \delta_{H}(\xi)^{-1/2} \delta_{G}(\xi)^{1/2} g(\xi) R_\mu(\xi)^{-1} u d\xi$$

as in [1]. Since this integral converges in \(C_0(H) \), we obtain

\[
\epsilon(g, u)(x)(\eta) = \int_H \delta_H(\xi)^{-1/2}\delta_0(\xi)^{1/2}g(\xi x)u(\eta^{-1}d\xi
\]

\[
= \int_H \delta_H(\xi\eta)^{-1/2}\delta_0(\xi\eta)^{1/2}g(\xi\eta x)u(\xi^{-1}d\xi.
\]

It is now easy to see that if we set \(f(x) = \int_H \delta_H(\xi)^{-1/2}\delta_0(\xi)^{1/2}g(\xi x)u(\eta^{-1}d\xi \), then \(f \in C_0(G) \) and \(\dot{f} = \epsilon(g, u) \). Thus \(\{ f : f \in C_0(G) \} \) is dense in \(\mathcal{C} \) by [1, Lemma 2b], and \(V \) is onto.

2. Let \((S, G) \) be a locally compact transformation group (with \(G \) acting on the right). By a unitary representation of \((S, G) \) on the Hilbert space \(\mathcal{C} \) we shall mean a \(*\)-representation \(E \) of \(C_0(S) \) (under the pointwise operations) in \(L(\mathcal{C}, \mathcal{C}) \) together with a unitary representation \(U \) of \(G \) on \(\mathcal{C} \) such that:

1. \(E(C_0(S)) \mathcal{C} \) is dense in \(\mathcal{C} \);
2. \(U(x)E(f)U(x^{-1}) = E(R(x)f), \ x \in G \), where \((R(x)f)(\varphi) = f(px) \).

Note that from the \(*\)-representation property of \(E \) it follows that \(E \) is continuous from \(C_0(S) \) in the \(\| \cdot \|_\infty \) norm to \(\mathcal{L}(\mathcal{C}, \mathcal{C}) \) in the uniform norm.

As an example, let \(G \) be a locally compact group and \(H \) a closed subgroup. Let \(S = G/H \) (right cosets) and let \(G \) operate on \(S \) in the usual way. Let \(\pi \) be the canonical projection of \(G \) onto \(S \). Let \(L \) be a unitary representation of \(H \). Form the induced representation \(U^L \) of \(G \), operating on the Hilbert space of functions \(\mathcal{C} \). For \(f \in C_0(S) \), define \(E^L(f) \) on \(\mathcal{C} \) by setting \((E^L(f)g)(x) = f(\pi(x))g(x) \). It is easily verified that this definition makes sense and that \((E^L, U^L) \) is a unitary representation of \((S, G) \) on \(\mathcal{C} \). It is called the unitary representation of \((S, G) \) induced by \(L \).

Returning now to a general transformation group, let \(f, g \in C_0(S \times G) \). Define \(f \circ g \) and \(f^* \) by \((f \circ g)(\varphi, x) = \int f(\varphi, y)g(\varphi y^{-1}, xy^{-1})dy \) and \(f^*(\varphi, x) = \int f(\varphi x^{-1}, x^{-1})^{-1}\delta_0(\varphi x^{-1})^{-1} \). It is easily verified that \(\circ \) and \(* \) turn \(C_0(S \times G) \) into a topological \(*\)-algebra (with respect to the usual inductive limit topology on \(C_0(S \times G) \)). Moreover, if \(x \in G \) we define \((R(x)f)(\varphi, y) = f(\varphi x, yx) \), and if \(h \in C_0(S) \) we define \((P(h)f)(\varphi, x) = h(\varphi)f(\varphi, x) \). It is easy to see that \((x, f) \rightarrow R(x)f \) and \((h, f) \rightarrow P(h)f \) are continuous maps from \(G \times C_0(S \times G) \) into \(C_0(S \times G) \) and \(C_0(S) \times C_0(S \times G) \) into \(C_0(S \times G) \) respectively (even when \(C_0(S) \) is given the sup topology). The algebra \(C_0(S \times G) \) is due to Dixmier [3] and has been studied extensively by Glimm [4].
Let \((E, U)\) be a unitary representation of \((S, G)\) on \(\mathcal{H}\). For \(f \in C_0(S \times G)\) define \(\Phi(f)\) by \(\Phi(f) = \int E(f(\cdot, x)) U(x^{-1})dx\). It is easily verified that \(\Phi\) is a continuous \(*\)-homomorphism from \(C_0(S \times G)\) into \(\mathfrak{L}(\mathcal{H}, \mathcal{H})\) such that \(\Phi(C_0(S \times G))\mathcal{H}\) is dense in \(\mathcal{H}\) and such that \(\Phi(R(x)f) = U(x)\Phi(f)\) and \(\Phi(P(h)f) = E(h)\Phi(f)\) for all \(x \in G\) and \(h \in C_0(S)\). Let \(\nu \in \mathcal{K}\) and define \(\Lambda\) by \(\Lambda(f) = \langle \Phi(f)\nu, \nu \rangle\). \(\Lambda\) is a Radon measure on \(S \times G\) such that \(\Lambda(f^* \circ f) \geq 0\) for all \(f \in C_0(S \times G)\). Any measure on \(S \times G\) satisfying this positivity condition will be called positive definite.

Let \(\Lambda\) be a positive definite measure on \(S \times G\). Exactly as in the case of positive definite measures on groups, we may define a pseudo-Hilbert inner production on \(C_0(S \times G)\) by setting \(\langle f, g \rangle_\Lambda = \langle \Gamma(f^* \circ g) \rangle\). We may then complete \(C_0(S \times G)\) to get a Hilbert space \(\mathcal{K}_\Lambda\). For \(x \in G\), \(R(x)\) extends to a unitary operator \(R_\Lambda(x)\) on \(\mathcal{K}_\Lambda\); for \(h \in C_0(S)\), \(P(h)\) extends to a bounded operator \(P_\Lambda(h)\) on \(\mathcal{K}_\Lambda\). \((P_\Lambda, R_\Lambda)\) is a unitary representation of \((S, G)\) on \(\mathcal{K}_\Lambda\). If, moreover, \(\Lambda\) arises from a unitary representation \((E, U)\) of \((S, G)\) on \(\mathcal{H}\) and a vector \(v \in \mathcal{H}\), as above, and if \(\mathcal{K}_1\) is the smallest \((E, U)\)-invariant subspace of \(\mathcal{H}\) containing \(v\), then \((P_\Lambda, R_\Lambda)\) is unitarily equivalent to the restriction \((E, U)\big|_{\mathcal{K}_1}\) of \((E, U)\) to \(\mathcal{K}_1\) via the closure of the isometry \(f \rightarrow \Phi(f)v\).

Suppose now that \(H\) is a closed subgroup of \(G\) and that \(S = G/H\). For \(h \in C_0(G)\), set
\[
(\tau h)(\pi(x)) = \int_H h(\xi x)d\xi.
\]
For \(k \in C_0(G \times G \times G)\), set \((\sigma k)(\pi(x), y, z) = \int_H k(\xi x, y, z)d\xi\) and \((\theta k)(x, y, z) = k(xz, xy^{-1}, x^{-1})\). Then \(\tau, \sigma, \theta\) are open homomorphisms of \(C_0(G)\) and \(C_0(G \times G \times G)\) onto \(C_0(S)\) and \(C_0(S \times G \times G)\) respectively, and \(\theta\) is a topological automorphism of \(C_0(G \times G \times G)\).

Lemma. Let \(\Lambda\) be a measure on \(S \times G\). Define the measure \(\mathcal{M}\) on \(G \times G \times G\) by setting
\[
\int \int \int k(x, y, z)d\mathcal{M}(x, y, z) = \int \int \int (\sigma \theta k)(p, y, z)d\Lambda(p,\gamma)dz
\]
for all \(k \in C_0(G \times G \times G)\). Then there is a measure \(\mu\) on \(G \times G\) such that \(d\mathcal{M}(x, y, z) = dxd\mu(y, z)\). Moreover, for \(\xi \in H\),
\[
d\mu(y\xi, z\xi) = \delta_{\sigma(\xi)}(\delta_{\mu_\xi}(\xi)^{-1})d\mu(y, z).
\]
Proof. That \(\mathcal{M}\) factors as above follows from the fact that \(\mathcal{M}\) is invariant under right translation in its first variable (cf. the argument in \([2, \text{bottom of p. 127}]\)). Now let \(k \in C_0(G \times G \times G)\) and \(\xi \in H\). Set \(k_\xi(x, y, z) = k(x, y\xi^{-1}, z\xi^{-1})\) and \(k_\xi(x, y, z) = k(\xi^{-1}x, y, z)\). Then
\[(\sigma \theta k^\ell)(\pi(x), y, z) = \int_H k(\eta x z, y x^{-1} \eta^{-1} x^{-1}, x^{-1} \eta^{-1} x^{-1}) d\eta\]

\[= \delta_H(\xi)^{-1} \int_H k(\xi^{-1} \eta x, y x^{-1} \eta^{-1}, x^{-1} \eta^{-1}) d\eta\]

\[= \delta_H(\xi)^{-1} (\sigma \theta k^\ell)(\pi(x), y, z).\]

From this we obtain

\[\int \int \int k(x, y, z) d\xi d\eta d\xi^* d\eta^* = \int \int \int k^\ell(x, y, z) d\xi d\eta d\xi^* d\eta^*\]

\[= \delta_H(\xi)^{-1} \int \int \int k^\ell(x, y, z) d\xi d\eta d\xi^* d\eta^*\]

and our lemma is proved.

Theorem 2. Let \(\Lambda\) be a positive definite measure on \(S \times G\) and define \(\mu\) as in the lemma. For \(\phi, \psi \in C_0(G)\), set \((\phi, \psi)_\mu = \int \phi(y) [\psi(z)]^* d\mu(y, z)\). If \(\xi \in H\), set \((L(\xi)\phi)(y) = \delta_0(\xi)^{1/2} \delta_H(\xi)^{-1/2} \phi(y\xi)\). Then \((\cdot, \cdot)_\mu\) is a pseudo-Hilbert inner product on \(C_0(G)\). Complete \(C_0(G)\) to get the Hilbert space \(\mathcal{V}_\mu\). Then \(L\) extends to a unitary representation \(L_\mu\) of \(H\) on \(\mathcal{V}_\mu\). Finally \((P_\Lambda, R_\Lambda)\) is unitarily equivalent to \((E^{L_*}, U^{L_*})\) via the closure \(W\) of map \(f \rightarrow \hat{f}\) of \(C_0(S \times G)\), where, for \(x \in G\), \(\hat{f}(x)\) is the vector in \(\mathcal{V}_\mu\) defined by \(\hat{f}(x)(y) = f(\pi(x), yx)\).

Proof. Let \(f \in C_0(S \times G)\) and \(h \in C_0(G)\). Set \(k(x, y, z) = \overline{h(x)} [f(\pi(x), zx)]^{-1} f(\pi(x), yx)\). Then

\[(\sigma \theta k^\ell)(\pi(x), y, z) = \int_H h(x) f(\pi(x), z) [-f(\pi(xz), yz)] d\xi\]

\[= (\tau h)(\pi(xz)) [f(\pi(xz), z)]^{-1} f(\pi(xz), yz)\]

Hence

\[\int h(x)(\hat{f}(x), \hat{f}(x)) d\mu = \int \int \int (\tau h)(p z) [f(p z, z)]^{-1} f(p z, y z) dz d\Lambda(p, y)\]

\[= \int \int \int f^*(p, z) (\tau h)(p z^{-1}) [f(p z^{-1}, y z^{-1})] dz d\Lambda(p, y)\]

\[= \Lambda(f^* \circ P(\tau h)f) = \langle P_\Lambda(\tau h)f, f \rangle_\Lambda.\]
Now $h \geq 0$ implies that $\tau h \geq 0$, so that $P_{\Delta}(\tau h)$ is a positive operator. Moreover, $x \rightarrow \int f(x) [f(x)]^*$ is continuous from x to $C_0(G)$ so that $x \rightarrow (f(x), f(x))_\mu$ is a continuous function. We conclude that $(f(x), f(x))_\mu \geq 0$ for all $x \in G$. Since $f \rightarrow \int f(x)$ maps $C_0(S \times G)$ onto $C_0(G)$, our first assertion is proved. That $L(\xi)$ is unitary for all $\xi \in H$ follows from the lemma, and that L_μ is a unitary representation of H is then clear.

Now it is easy to see that $f \in \mathcal{F}_\mu$. Choose $h \in C_0(G)$ so that $\tau h = 1$ on $\{p \in S : f(p, y) \neq 0 \text{ for some } y \in G\}$. Then $P_{\Delta}(\tau h)f = f$ and we obtain $\|f\|_{\Delta} = \|f\|$. Once again we are reduced to showing that W is onto. This is done exactly as in Theorem 1. Let $g, u \in C_0(G)$. Regarding u as a member of \mathcal{C}_μ, form $\epsilon(g, u)$. We obtain $\epsilon(g, u)(x)(y) = \int_H g(\xi)xu(y\xi^{-1})d\xi$. Set $f(\pi(x), y) = \int_H g(\xi)xu(yx^{-1}\xi^{-1})d\xi$. If the supports of g and u are K_1 and K_2 respectively, the support of f is contained in $\pi(K_1) \times (K_2K_1)$, compact. Hence $f \in C_0(S \times G)$. It is easy to see that $f = \epsilon(g, u)$, and our proof finishes as before.

Corollary. Every unitary representation of $(G/H, G)$ is induced.

Proof. If the representation space is jointly cyclic under E and U' the corollary follows from the theorem together with the remarks two paragraphs before the lemma. The general case follows from the fact that induction commutes with direct summation.

References

University of California, Los Angeles