INTERVAL CLANS WITH NONDEGENERATE KERNEL

R. C. PHILLIPS

Introduction. The object of this paper is to characterize the clans (compact connected Hausdorff topological semigroups with an identity element) which are homeomorphic to a unit interval and which have a nondegenerate kernel (minimal two-sided ideal). The corresponding case when the kernel is degenerate has been characterized in a paper by H. Cohen and L. I. Wade [2] together with an earlier paper by Mostert and Shields [5].

In a topological semigroup T, $K(T)$ or K denotes the kernel of T. The symbol u is reserved to denote an identity element. The term “standard thread” will mean a clan with zero which is homeomorphic to a unit interval and whose endpoints are its zero and identity element. In a standard thread T with identity element u and zero 0, for $a, b \in T$, $[a, b]$ will denote the interval from a to b, (or b to a) inclusive and $a \leq b$ will mean $a \in [0, b]$, with $a < b$ in case $a \neq b$. A relation R on a topological semigroup x is called a “closed right congruence” if (i) R is an equivalence relation, (ii) $a, b, c \in X$, aRb implies $acRbc$, (iii) aRx_n for $n = 1, 2, \ldots$ and $x_n \rightarrow x$ implies aRx (closed). We denote by R_a the set $\{x \mid aRx\}$. The analog of Theorem I where R satisfies $(2)'$ $(a, b, c \in X, aRb$ implies $caRcb$ (left congruence) instead of (2) is also true.

I would like to express my appreciation to Professor H. Cohen and Professor R. J. Koch for their assistance in the preparation of this paper.

Theorem I. Let T be a standard thread and R_a closed right congruence on T. Then for $a \in T$ either (1) $R_a = a$ or (2) R_a is an interval $[e, b]$ where e is idempotent and $[e, b]$ is a subsemigroup of T with zero element e.

Proof. Suppose there exists $a' \in T$ such that $a'Ra$ and $a' \neq a$. Let $e = \inf \{x : xRa\}$ and $b = \sup \{x : xRa\}$. Since R_a is closed, eRa and bRa. Now $e < b$ which implies $[3]$ that $e = br$ for some $r \geq e$. Therefore, bRe implies $brRer$ implies $eRer$ implies $eRer^*$ for $n = 1, 2, \ldots$ From $[3]$ we know $r^n \rightarrow j = j^2 \leq r$ and hence $eRej$. We will show $j \leq e$. If $j \geq b$, then $bj = b$ and hence $b = bj = (bj)r = br = e$. Therefore $j < b$.
and \(j = bj \leq br = e \), as was to be shown. Now \(j \leq e \) implies \(ej = j \) and since \(eRej, eRj \) which implies by the minimality of \(e \), that \(e = j \) and hence \(e^2 = e \). Now for \(c \in [e, b] \), \(c = bp \) for some \(p \geq c \) and since \(eRb, epRbp \) and we have \(eRc \). This shows that \(R_a = [e, b] \) which is indeed a semigroup with zero element \(e \).

Notice that if \(X \) and \(Y \) are topological semigroups and \(f \) maps \(X \) into \(Y \) continuously and either \(f(xy) = f(x)f(y) \) or \(f(xy) = f(x) \cdot y \), (in case \(Y \) is contained in \(X \)), then the relation \(R \) induced by letting \(R_a = f^{-1}(a) \) is a closed right congruence on \(X \).

Corollary II. Let \(X \) be a topological semigroup and let \(A \) be a standard thread contained in \(X \). Then for any element \(c \in X \), \(cA \) is a continuous monotone image of \(A \).

Proof. Define the relation \(R \) on \(A \) by \(R_a = \{ x \mid x \in A, \alpha = ca \} \). Then \(R \) is a closed right congruence and hence multiplication by \(c \) is monotone.

Clans on an interval. Let \(S \) be a clan which is homeomorphic to a unit interval and which has a nondegenerate kernel, \(K \). By a result of A. D. Wallace [7], the identity element \(u \) of \(S \) is one of the endpoints of \(S \). Note that \(K \) is a closed interval of \(S \) and let (i) \(A = \) the closure of the component of \(S \setminus K \) which contains \(u \), (ii) \(B = S \setminus (K^0 \cup A) \), (iii) \(z = A \cap K \), (iv) \(z' = B \cap K \), and (v) \(d = \) the nonidentity endpoint of \(S \). A result of Faucett [4] is that \(A \) is an abelian subclan of \(S \) with zero \(z \) and that \(K \) consists of either all left zeroes or all right zeroes of \(S \). Let us assume that \(K \) is all right zeroes.

![Figure I](image)

Lemma III. \(AB = Ad = B \).

Proof. Since \(A \) is a standard thread contained in \(S \), by the analog of Corollary II, \(Ad \) is a continuous monotone image of \(A \) and \(Ad = [zd, ud] = [zd, d] \) which contains \(B \) since \(zd \) is in \(K \). In particular, there exists an element \(a \) in \(A \) such that \(z' = ad \). Now since \(z \) is the zero for \(A \), \(z = za \) and we have \(zd = (za)d = z(ad) = zz' = z' \). Therefore \(Ad = [d, z'] = B \). Also \(AB = A(Ad) = A^2d = Ad = B \) as was to be shown.

Notice that from Corollary II we have \(dA = [dz, du] = [z, d] \) which contains \(z' \). Let \(\theta = \inf \{ a : a \in A, da = z' \} \). Denote \([\theta, u] \) by \(A_1 \) and \([z, \theta] \) by \(A_2 \). (Note that \(\theta \neq z \), else \(z' = d\theta = z \).)

Lemma IV. \(BA_1 = dA_1 = B \); \(BA_2 = dA_2 = K \); and \(\theta^2 = \theta \).
Proof. In the same manner as the proof of Lemma III we have $dA_1 = [z', d] = B$ and $dA_2 = [z', z] = K$. Since $A_2 \subseteq A_2[3]$, $\theta \in A_2$. Therefore $d\theta^2 \subseteq dA_2 = K$. But $d\theta^2 = z'\theta \in BA_1 = AdA_1 = AB = B$. So $d\theta^2 \subseteq K \cap B = z'$ and by the minimality of θ, $\theta^2 = \theta$. Now we employ a result of Mostert and Shields [5] that A_1 and A_2 are subclans of A, that θ is a zero for A_1 and an identity for A_2, and that $a \in A_1$, $a' \in A_2$ implies $aa' = a'a = a'$. Therefore $A_1A_2 = A_2$ and $BA_2 = dA_1A_2 = K$ and the lemma is proved.

Lemma V. B is an abelian subsemigroup of S.

Proof. First we show d^2 is in B. Clearly d^2 is not in A, else $z' = dz' = d(dB) = d^2B \subseteq A$. So suppose d^2 is in K. Then $dd^2 = d^2$ and by Lemma IV $d^2 = da$ for some a in A_2. Therefore $d^2u = d^2 = dd^2 = d(da) = d'a$, and since left multiplication by d^2 induces a closed right congruence on $[u, a]$, $d^2[u, a] = d^2$. Now $a \in A_2$ so that θ is in $[u, a]$. Hence $d^2\theta = d^2$. But $d^2\theta = d(d\theta) = d(z') = z'$ and d^2 is in B. Using Lemmas III and IV, we have $B^2 = (dA_1)(dA_2) \subseteq dB A_1 = d(dA_1) \subseteq BA_1 = B$, i.e., $B^2 \subseteq B$. Now we show B is abelian. Using again Lemmas III and IV, $a \in A_1$ implies $da \in B$ and $da = a'd$ for some $a' \in A$. Since $d^2 \subseteq B$, $d^2 = a''d$ for some $a'' \in A$. Using the commutativity of A, we have $dad = (a'd)d = a'a''d = a''a'd = a''da = d'a$. Let b, b' be elements of B. Then for some $a_1, a_2 \in A_1$, $b = da_1$, and $b' = da_2$. So $bb' = da_1da_2 = d^2a_1a_2 = d^2a_1a_2 = d^2a_1a_1 = b'b$ and B is abelian.

Lemma VI. $KB = z'$.

Proof. Since $KB = dA_2dA_1 = d(A_2d)A_1 \subseteq dBA_1 = dB \subseteq B$, $KB \subseteq K$ and $B = z'$.

In what follows S/K denotes the Rees quotient [6] of S modulo K and F denotes the natural map of S onto S/K. Since $d^2 \subseteq B$, $F(d^2) \subseteq F(B)$ and we have

Theorem VII. Let S be an interval clan with a nondegenerate kernel K. Let u be the identity and d the nonidentity endpoint of S/K; denote $F(K)$ by 0. Then (i) there exists an element $\theta = \theta^2 \in [0, u] - \{0\}$ such that $d\theta = 0$ and (ii) $d^2 \in [d, 0]$. Further, the function $h: F(A_2) \to K$ defined by $h(x) = d \cdot F^{-1}(x)$ for $x \neq 0$ and $h(0) = z$ is continuous and induces a closed right congruence on $F(A_2)$.

Let S be a clan on an interval $[d, u]$ where u is the identity element. Suppose S has a zero 0, that (i) and (ii) of Theorem VII are satisfied, that $d \neq 0$ and that $u \neq \theta$. Consider the real interval $[1, 5]$ and define

1. $f: [d, 0] \to [1, 2]$ so that $f(d) = 1, f(0) = 2$ and f is a homeomorphism,
2. \(g: [0, u] \to [3, 5] \) so that \(g(0) = 3, g(\theta) = 4, g(u) = 5 \) and \(g \) is a homeomorphism,
3. \(h: [0, \theta] \to [2, 3] \) so that \(h(0) = 3, h(\theta) = 2, h \) is continuous and \(h \)
induces a closed right congruence \(R \) on \([0, \theta]\), \((R_x = h^{-1}h(x))\).

Further, define for all \(x, y \) and \(z \) on which the functions are defined,
4. \(c \cdot h(x) = h(x), \) all \(c \in [1, 5], \)
5. \(h(x) \cdot g(y) = h(xy), \)
6. \(h(x) \cdot f(y) = 2, \)
7. \(g(x) \cdot g(y) = g(xy), \)
8. \(f(x) \cdot f(y) = f(xy), \)
9. \(g(x) \cdot f(y) = f(xy), \)
10. \(f(x) \cdot g(y) = \{ h(y) \text{ for } y \in [0, \theta], f(xy) \text{ for } y \in [\theta, u] \}. \)

We now show that definition 5 is well defined. The others are clear.
Suppose \(h(a) = h(b) \) and \(a < b \). Then from condition 3 and Theorem I
we have \(a, b \in [e, r] = h^{-1}h(x) \) and \(e^2 = e \) and \(e \) is a zero for \([e, r], \) a
semigroup. Then for \(c \in [0, u], h(a) \cdot g(c) = h(ac) \) and \(h(b) \cdot g(c) = h(bc). \)
If \(c \leq e, \) then \(ac = bc = c \) \([5]\) so that \(h(ac) = h(bc). \) If \(c > e, \) then \(e \leq ac \leq a \)
and \(e \leq bc \leq b \) and \(h(ac) = h(bc) = h(a), \) and \(h \) is well defined.

It can be easily verified that the interval \([1, 5]\) together with defi-
nitions 4 through 10 is a clan \(S' \) with kernel \([2, 3]\) and that \(S'/K \) is
topologically isomorphic to \(S. \)

Now suppose \(S \) in the previous construction were the Rees quotient
of an interval clan \(T = [d, z', z, u] \) with nondegenerate kernel \(K = [z', z]. \)
Then outside \(K, T \) is reproduced by our construction and if \(h \) in 3 is
chosen to be the \(h \) of Theorem VII, the resulting clan is topologically
isomorphic to \(T. \)

If \(d = 0, \) omit definitions 1, 6, 8, 9, and 10; if also \(u = \theta, \) omit the
equation \(g(u) = 5 \) from definition 2; change definition 4 appropriately.
The conclusion is completely analogous for \(S = [2, 4] \) if \(u = \theta \) or
\(S = [2, 5] \) if \(u \neq \theta. \)

From the preceding two paragraphs we conclude:

Theorem VIII. An interval clan with a nondegenerate kernel is char-
acterized by a pair \((S, h)\) where
1. \(S \) is an interval clan with zero \(0, \) say \(S = [d, 0, u] \) where \(d \) may
equal \(0, \)
2. \(d^2 \in [d, 0], \)
3. there exists \(\theta = \theta^2 \in (0, u) \) such that \(d\theta = 0, \)
4. \(h \) maps \([0, \theta]\) onto \([1, 2]\) continuously,
5. \(h \) induces a closed right (left in case \(K \) is all left zeroes) congruence
on \([0, \theta]. \)

The pair \((S, h)\) characterizes a particular interval clan \(T \) with a
nondegenerate kernel K in the following sense; $T/K = S$ and the function h of Theorem VII satisfy the conditions of Theorem VIII, and a clan T' gives rise to the same S and h if and only if T' is topologically isomorphic to T.

Bibliography

Louisiana State University